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A B S T R A C T   

In this article, we investigate the movement and vibrations of a blade due to the presence of the mast. When the 
blade passes in front of the mast, a sudden pressure spike induces vibrations in the blade. To study the influence 
of stiffness, two different structures were studied. We present our numerical schemes concerning the resolution of 
the flow, the behavior of the structure and the coupling of the two systems. Then, we validate two methods 
against an experiment (Bahaj et al., 2007). In a third section, we present cases of fluid-structure interaction. 
Several structures are setup by modifying the stiffness of the material. Their steady open-water (without a mast) 
behaviors are compared. And finally, two dynamic fluid-structure computations are performed to compare the 
behavior of an elastic blade passing next to a mast. For all the cases, we use K–FSI developed by K-Epsilon to 
solve the fluid-structure interaction (FSI).   

1. Introduction 

Tidal currents as a potential source of renewable energy has been 
under study for more than 10 years now. Mainly horizontal tidal tur-
bines have been investigated both numerically and experimentally 
(Bahaj et al., 2007; Mycek et al., 2014; Tedds et al., 2014; de Jesus 
Henriques et al., 2014; Fernandez-Rodriguez et al., 2014). Vertical tidal 
turbines have also being studied (Stallard et al., 2013; Derakhshan et al., 
2017). Two designs were also compared extensively in the literature, see 
(Khan et al., 2009) for example. Current research focuses on optimizing 
array of tidal turbines and their interaction (Funke et al., 2014), erosion 
of the seabed (Verbeek et al., 2020), performance and optimization of 
the shape or structure (Nicholls-Lee, 2011), fatigue and reliability 
(Finnegan et al., 2020). 

To optimize the performance of a tidal turbine, there is a need for 
accurate and efficient tools to perform simulations. In this article, we 
focus on the development and evaluation of a new tool to better un-
derstand the physics and calculate the loads acting on a single flexible 
tidal turbine including mast effects. This tool could be used to improve 
estimations of fatigue for example. 

The first simulation framework used to perform computations was 
the Blade Element Momentum Theory (BEMT), for example in Batten 

et al. (2007)). BEMT is a good approach to assess the open water per-
formance of one turbine, but it fails to accurately simulate the perfor-
mance in the presence of obstacles or other turbines. To avoid this 
problem, other approaches have been developed such as the Vortex 
Lattice Method (VLM) in Pinon et al. (2012). Their focus is the wake of 
the turbine to study the interaction between two or more turbines (for 
example in Mycek et al. (2013)). Their results are accurate until stall 
which is a known limitation of the model: their method force the flow to 
be attached until the trailing edge, hence overestimating hydrodynam-
ical forces. 

Attempts to use Computational Fluid Dynamics (CFD) on wind or 
tidal turbine has been made in the past. To avoid too much computa-
tional efforts, many authors modeled the behavior of the turbine instead 
of solving the complete geometry. For instance, Jimenez et al. (2007) 
used Large Eddy Simulation (LES) with the turbine modeled by an 
approximate model of a concentrated drag force to study the wake 
development. Also using an approximate model for the turbine, Calaf 
et al. (2010) performed a LES computation using an actuator disk. 

Fully resolved blade geometry CFD computations are computation-
ally expensive but can yield much more information about the flow 
behavior and force distribution along the blade. Afgan et al. (2013) 
modeled the fluid using different turbulence models (k − ω SST, 
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Launder-Reece-Rodi and LES) on the 20◦ pitch angle case of Bahaj et al. 
(2007). They performed unsteady simulations including the mast and a 
simplified geometry of the cavitation tunnel. Yan et al. (2017) was the 
first work to perform a full-scale free-surface flow simulation of a tidal 
turbine. All of those methods need a lot of computing power, and are 
only slightly more accurate than BEMT if the goal is only to obtain in-
formation on performance curves. Their main advantage is their ability 
to add geometry details (mast, cables, proximity to the seabed or duct for 
example) that would be difficult or even impossible to model with 
current BEMT models. To account for the fluid when simulating an 
unsteady simulation, a linear model is often used. This is, for example, 
what is used by the industry standard software Bladed and the 
open-source software FAST (Jonkman, 2010). It is with the work of 
Bazilevs et al. (2011) and Takizawa et al. (2011) that the first dynamic 
FSI computations were performed on wind turbines using CFD on fully 
resolved geometries. 

Tidal and wind turbines are different when considering fluid- 
structure interaction in the sense that water has a density of three 
order of magnitude higher than air. The fluid-structure coupling is 
therefore much greater and comparable to what can be observed for 
hydrofoils Lothodé et al. (2013). Murray et al. (2018) investigated the 
influence of the added mass on the response behavior of tidal turbines in 
order to model it in a BEMT code. They showed that the natural fre-
quency is decreased especially when using light blades. Turbulence 
influx events could not induce vibration because their frequency was 
higher than the natural frequency of the blade. Nicholls-Lee (2011) 
coupled a structure solver with a surface panel code in order to obtain a 
steady-state solution and to optimize a tidal turbine structure. Zilic De 
Arcos et al. (2019) studied the performance and deflection of a turbine 
with flexible blades using two-way coupling, but no dynamic effects 
were investigated. However, no study of the interaction between the 
various elements of the tidal turbine has been carried out. Therefore, 
understanding what happens for a blade-mast interaction including the 
effects due to flexible blades involves the use of strongly coupled 
fluid-structure interaction solver. For example, these results could be 
used to understand the dynamics of passively adaptive blades (Nich-
olls-Lee et al., 2013). 

We first present our numerical schemes. The fluid solver is described 
in Section 2.1 and the structure solver is detailed in Section 2.2. Our 
fluid-structure coupling scheme is shown in Section 2.3 and finally mesh 
morphing is quickly introduced in Section 2.4. Next, we validate our 
simulation procedure in Section 3.3, first ignoring blade deformation 
using Bahaj et al. (2007) as a baseline validation for rigid geometry. 
Later, we introduce the different structures used in the article and 
reproduce the performance curve taking into account the flexibility of 
the blades in Section 3.4. Finally, simulations of two different structures 
focusing on the blade-mast interaction are discussed in Section 4. 

2. Numerical method 

In this section, we describe the different solvers used in this article 
and the coupling scheme that allows to solve the steady and unsteady 
simulations. In Fig. 1, we show a schematic of the domain and we 
describe the different notations used in this article in Table 1. 

2.1. Fluid solver 

The fluid solver is ISIS-CFD (Deng et al., 2005). It is developed by the 
METHRIC team of LHEEA laboratory and commercialized by Cadence. It 
is included in FINETM/Marine. ISIS-CFD solves the incompressible un-
steady Reynolds Averaged Navier-Stokes equations. The code is fully 
parallel using the MPI (Message Passing Interface) protocol. 

It is formulated through a fully unstructured finite-volume method to 
obtain the spatial discretization of the conservation equations. Arbi-
trarily shaped polyhedrons are assembled through a list of faces. All 
unknown variables are cell-centered. 

The temporal integration scheme is the implicit, second order 
Backward Differentiation Formula (BDF2) scheme when dealing with 
unsteady configurations. For each time step, the residual of the errors is 
minimized through an inner loop in order to solve the non-linearities of 
the system. Pressure-velocity coupling is enforced by a SIMPLE like al-
gorithm: at each time step, the velocity updates come from the mo-
mentum equation and the pressure is given by the mass conservation 
law. 

Turbulence is accounted using additional transport equations for 
modeled variables. They are solved in a form similar to the momentum 
equations and they can be discretized and solved using the same prin-
ciples (Duvigneau et al., 2003). In this article, we use the k − ω SST 
model, a two-equations eddy-viscosity model. 

An Arbitrary Lagrangian Eulerian (ALE) formulation is used to ac-
count for fluid mesh changes due to the body deformation (Hughes et al., 
1981; Leroyer and Visonneau, 2005). Basically, the flow velocity ufluid is 
decomposed in two velocities: a velocity of the mesh umesh, and an 
additional velocity relative to the mesh urelative. 

ufluid = umesh + urelative (1) 

It is possible to have a non-matching sliding interface (Queutey et al., 
2012). It allows to have a rotating mesh inside a fixed mesh for example, 
and to avoid using more costly procedures involved in overlapping 
meshes. This is very useful for modeling a propeller or a tidal turbine. 

A procedure called Rotating Frame Method (RFM) is available. It 
adds a mesh velocity corresponding to a rotation in a domain whilst the 
mesh stays fixed. It allows to compute performance curves with larger 
time steps than typical rotating mesh methods. A comparison of the two 
methods is made in Section 3.4. 

2.2. Structure solver 

We use the solver K-Struct which is developed by the company K- 

Fig. 1. Notations used for the fluid-structure domain.  

Table 1 
Notations for the fluid domain, structure domain and interface (see 
Fig. 1).  

Symbol Description 

Ω complete domain Ω = Ωf ∪ Ωs 

Ωf fluid domain 
Ωs structure domain 
Σ fluid-structure interface, Σ = Ωf ∩Ωs 

Γf fluid boundaries 
n normal outer vector  
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Epsilon (K-Epsilon, 2020). The solver is based on a non-linear finite 
element formulation derived through the use of the virtual work prin-
ciple. The temporal discretization is driven by a Newmark–Bossak 
scheme (Wood et al., 1980) and the resolution is ensured by a Newton 
method through the computation of the tangent matrix. Non-linear it-
erations are relaxed with an Aitken acceleration. 

The code initially aimed to simulate the dynamic behavior of sailboat 
rigging: sails, mast and cables (Durand et al., 2014). A non-linear finite 
element method with a large displacement formulation is implemented. 
While numerous element types have been implemented in the structural 
code, in the present study, only Euler-Bernoulli beam elements are used, 
as shear deformation was considered negligible. This element accounts 
for torsion, bending and axial deformations. It offers a good compromise 
between accuracy and solving speed compared to more complex shell 
elements. This kind of element is used in the industry standard software 
FAST (Wang et al., 2017). The topology and properties of the different 
structures used in this work will be further detailed in Section 4. 

2.3. Coupling scheme 

We use K–FSI, a FSI software developed by K-Epsilon. K–FSI imple-
ments a strong coupling scheme, more details are given in Durand 
(2012). As stated previously, the coupling was first developed to tackle 
sails and rigging issues. Even though air is not a dense material, sails 
have a large wetted area and are lightweight structures. As shown in 
Causin et al. (2005), large wetted areas and light structures induce 
strongly coupled fluid-structure problems. In the case of a tidal turbine, 
the material used can be dense (typically metals), but the wetted area is 
significant and the surrounding fluid is denser than air (about 103 times 
more). It follows that the problem is also strongly coupled. 

To tackle strongly coupled problems, numerous solutions exist 
(Fernández, 2011). Most of them are partitioned algorithms where the 
fluid problem and the structure problem are solved separately. The most 
naive algorithm is often referred as explicit: during one time step, the 
fluid problem and the structure problem are solved only once, one after 
each other. It is the fastest and simplest algorithm for weakly coupled 
problems, but it is unstable in the case of strongly coupled cases. 
Monolithic schemes, where all the equations are solved together, can be 
very stable. Since all equations must be developed in a similar frame-
work, and all unknowns are shared between systems, they make it more 
difficult to use already existing software. 

In the case of partitioned schemes used for strongly coupled cases, an 
implicit scheme with a relaxation (applied to forces given by the fluid or 
position of the nodes given by the structure) can be stable if the relax-
ation rate is low enough (Causin et al., 2005). During one time step, the 
fluid equations and the structure equations are solved one after another 
until a convergence is reached. It can be very costly if the convergence is 
not fast enough. The choice of the relaxation rate is a matter of trade-off 
between greater stability and convergence rate. An Aitken procedure is 
useful for dynamically adjusting the relaxation rate and accelerating 
convergence, as in (Küttler and Wall, 2008). 

Instead of solving a fixed point problem to reduce the residual of 
errors between the structure and fluid forces, one can use a Newton 
algorithm including an exact Jacobian operator as in (Fernández and 
Moubachir, 2005). It turned out to be very efficient, even though the 
fluid-structure problem was greatly simplified in order to be able to 
develop such an operator. K–FSI takes advantage of this idea to accel-
erate convergence. Such operators have been developed in Lothodé 
(2018). For example, it allowed to solve problems on membranes (Gross, 
2015) or vortex induced vibrations on offshore risers (Lothodé et al., 
2015). 

Forces (stresses on the wetted surface) are given through an arbitrary 
polygonal surface mesh by the fluid solver. They are interpolated on the 
structure by projecting the force vector onto the neutral axis of the 
beam. 

f (i,n)structure = Pi↦s
(

f (i,n)interface

)
(2) 

In between two beam nodes, a linear interpolation is done for the 
torsion and deflection depending on the position of the projected forces. 
The displacements of the structure (at a time step i and sub-iteration n: 
δx(i,n)

structure) are propagated to the interface surface mesh through a cubic 
spline representing the neutral axis of the beam with Ps↦i the operator 
mapping the structure position to the interface position: 

x(i,n)
interface = Ps↦i( x(i,n− 1)

structure + δx(i,n)
structure

)
(3) 

Once the structure has moved the interface surface mesh, a com-
parison is done between the old position of the surface nodes and the 
new ones: 

δx(i,n)
interface = x(i,n)

interface − x(i,n− 1)
interface (4) 

If the maximum observed displacement of the interface nodes is non- 
zero: 

δx(i,n)
interface∞> ϵdisplacement (5) 

a mesh-morphing algorithm is performed to modify the position of 
all the nodes in the volume in order to maintain a good quality mesh. 
The algorithm is described in Algorithm 1. A mesh movement velocity 
ui,n)

mesh is computed from the new position of the mesh and used through 
the ALE capability of the fluid solver. 

Algorithm 1. Quasi-monolithic algorithm. 

2.4. Mesh morphing 

After the interface deformation, the whole of the fluid mesh needs to 
be moved. This deformation occurs at each coupling iteration. The 
number of calls to this procedure being non-negligible, the mesh 
deformation needs to be fast. For this purpose, a method has been 
developed which propagates the deformation state to the fluid mesh. 
The basic principle is to propagate, from the interface to the boundaries, 
the information about displacements. A smoothing step can be needed to 
improve the quality of the cells. The details of the method are given in 
Durand (2012). 
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3. Fluid validations 

3.1. Description of the reference case 

In Bahaj et al. (2007), the authors describe an experiment of a 
small-scale tidal turbine. The tests were carried out in a cavitation 
tunnel at the University of Southampton (see Fig. 2). The rotor radius of 
the turbine is r = 400 mm. It was chosen as a compromise between 
maximizing the Reynolds number and reducing the tunnel blockage 
correction. 

In the original work, the blockage correction is based on an actuator 
disk model of the flow through the turbine in which the flow is presumed 
to be uniform across any cross-section of the stream tube enclosing the 
turbine disc. For example, with a single rotor and a thrust coefficient of 
0.8, the corrections amounted up to an 18% decrease in power coeffi-
cient and an 11% decrease in thrust coefficient. 

All the curves presented in this article take into account this blockage 
correction. It means that all results are presented as open water curves. 
These numerical computations are open water computations and no 
correction are necessary. 

The blades are made out of the NACA 63-8xx series. The distribution 
of pitch, thickness and chord can be found in Table 2. The pitch angle 
reference is the angle of the section r = 80 mm. It means that a pitch of 
15◦ is simply taking the blade untouched and 20◦ means adding a 
rotation of 5◦ to the blade. 

To compare the performance of the tidal turbine, we introduce three 
dimensionless quantities. The thrust coefficient CT is equal to the force in 
the flow direction divided by 12 ρV2S. The power coefficient CP is equal to 
the torque times the rotation speed divided by 1

2 ρV3S. The tip speed 
ratio, TSR, is the ratio of blade tip speed to flow speed. These notations 
and definitions are reported in Table 3 ρ is the density of the fluid (here 
998.3 kg/m3). r is the radius of the turbine (here 0.4 m). 

3.2. Description of the simulations 

The fluid domain is decomposed in two parts. The outer domain is 
made of a box of width Lx = 4 m, length Ly = 6 m and height Lz = 4 m. A 
smaller domain, cylindrical, represents the domain in rotation and has a 
length of L′

y = 0.6 m and a radius of r′ = 0.6 m. It includes the hub part 
that is rotating and the blades. The two domains are shown in Fig. 3. The 
inner domain can rotate inside the outer domain. The two domains are 
linked through a sliding interface. The mesh is generated with Hex-
pressTM, part of FINETM/Marine, with an octree method and consists of 
4.1 million hexagonal cells. 

Fig. 2. Photo of the experiment (from Bahaj et al. (2007)).  

Table 2 
Blade geometry description.  

r (mm) c/R Pitch (◦) t/c (%) 

80 0.125 15 24 
100 0.1203 12.1 22.5 
120 0.1156 9.5 20.7 
140 0.1109 7.6 19.5 
160 0.1063 6.1 18.7 
180 0.1016 4.9 18.1 
200 0.0969 3.9 17.6 
220 0.0922 3.1 17.1 
240 0.0875 2.4 16.6 
260 0.0828 1.9 16.1 
280 0.0781 1.5 15.6 
300 0.0734 1.2 15.1 
320 0.0688 0.9 14 
340 0.0641 0.6 14.6 
360 0.0594 0.4 13.6 
380 0.0547 0.2 13.1 
400 0.05 0 12.6  

Table 3 
Notations used for the dimension and dimensionless numbers.  

Name Property 

r radius of the turbine (m) 
S = πr2 swept area (m2) 
V inlet velocity (m/s) 
ρ density of the fluid (kg/m3) 
Q turbine torque (Nm) 
T turbine drag (N) 
Ω rotation speed (rad/s) 

TSR =
Ωr
V 

tip speed ratio 

CT =
T

1
2

ρV2S 

thrust coefficient 

CP =
Q × Ω
1
2

ρV3S 

power coefficient  

Fig. 3. Different views of the fluid mesh. From left to right, top to bottom: 
computational domain, internal cylindrical domain (used as a sliding interface), 
tidal surface mesh, volume mesh cut. 
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The boundary layer is captured with a y+ ≈ 30, thanks to the 
insertion of cell layers. Depending on the surface, 10 to 20 layers were 
added in order to reach the needed size, with a geometric expansion law 
with a factor of 1.2 increase in thickness between each pair of layers. 
Refinement boxes were placed to capture the tip vortices and the close 
wake correctly. 

Finally, an orthogonality criterion was setup for the mesh optimi-
zation step (smoothing) of 20◦. The mesh refinement size was chosen in 
order to satisfy both best practices and constraints on the allocated CPU 
time of the project. As shown in the next section, the mesh yields 
satisfactory results even if a mesh independence should be pursued in 
future research. 

The sides and outlet boundary conditions use a zero-gradient 
boundary condition for pressure (∇p ⋅n = 0). The inlet boundary con-
dition is an imposed velocity of ufluid = V. 

With the Rotating Frame Method, a rotation mesh velocity is added 
to the cylinder through the ALE formulation (umesh = Ω‖d‖2 with d the 
distance perpendicular to the rotation axis) while the mesh if physically 
fixed: 

∂xmesh

∂t
= 0 (6) 

In other words, the mesh velocity is not computed from the mesh 
movement, because it is fixed, but is imposed as if the mesh was rotating. 
With this method, the wake shows a steady behavior. The time step only 
plays a role for the convergence toward the steady solution and there-
fore can be very large. 

With the dynamically rotating mesh, the mesh is rotating at an 
imposed velocity. The fluid velocity is not imposed, instead the mesh 
velocity is computed from the mesh movement: 

umesh =
∂xmesh

∂t
(7) 

The derivative is approximated through a Backward Differentiation 
Formula of order one or two. In this case, the wake is unsteady from the 
point of view of the observer. Both methods exploit the ALE capability of 
the fluid solver, but in a different manner. 

When the mast is included in the domain, the Rotating Frame 
Method cannot be used accurately anymore, and only the dynamically 
rotating mesh can be used. 

3.3. Validating all pitches 

To validate our fluid model, we perform the five runs listed in Table 4 
using the Rotating Frame Method. A time step of Δt = 1/20th of a 
rotation 

(
Δt = 1

20
V×TSR
r×2π

)
is used, and iterations continue until conver-

gence is reached. For each pitch angle, seven TSR are simulated (4, 4.5, 
5, 5.5, 6, 7 and 8). Results are shown in Fig. 4. 

The blade pitch angle of 15◦ corresponds to the highest angle of 
attack. The flow around the blade is fully separated at a TSR of 3 and still 
partially detached for a TSR from 4 to 5. For TSR between 4.5 and 5.5, 
the error observed between the experimental data and the simulation is 
about 5% for the CP and 2% for the CT. Outside this range, the error is 
larger, especially for high TSR where the experimental CP drops quicker 
than what is observed with the simulations. The observed CP peak is 
observed for a TSR of 5, which matches the experimental peak, with a 

slightly larger value (0.4626 for the simulation, 0.44 for the 
experiment). 

The blade pitch angle of 20◦ corresponds to the design (optimum) 
angle. The flow is only partially detached for a TSR of 3 on the upper 
part of the blade, and fully separated for the other half of the blade. 
Some detached flow can still be seen for TSR up to 4.5, but is limited to a 
small area of the blade. The error made between the experimental and 
the simulation results is very small (about 1% for both CP and CT). It is 
probably due to an accurate blockage correction, and an attached flow 
behavior around the blades. The CP peak is not as clear as the one with 
an angle of 15◦, and occurs at a TSR of 5.5 (CP = 0.4533), although the 
value obtained for a TSR of 5 and 6 are close (0.4450 and 0.4531 
respectively). 

The blade pitch angle of 25◦ is starting to show a significant loss in 
term of power peak, and it is even worse for the blade pitch angles of 27◦

and 30◦. With the angle of 25◦, the flow behavior is similar to the blade 
pitch angle of 20◦ with only the lower third part of the blade showing 
separation. For the blade pitch angles of 27◦ and 30◦, this separation is 
even smaller. For the blade pitch angle of 30◦, the flow starts to separate 
at the tip, on the front side. The difference observed between the 
simulation and the experiment is only significant for the blade pitch 
angle of 30◦, otherwise the agreement is good (less than 5% difference). 
For the blade pitch angles of 25◦, 27◦ and 30◦, the CP peaks at a TSR of 5, 
4 and 4 respectively, with a CP of 0.3491, 0.3012 and 0.2391. 

Table 4 
Pitch angle and corresponding flow speed.  

Pitch angle (◦) Flow speed 

15◦ 1.40 m/s 
20◦ 1.73 m/s 
25◦ 1.54 m/s 
27◦ 1.30 m/s 
30◦ 1.54 m/s  

Fig. 4. Power and thrust coefficients for all cases in Table 4 with the Rotating 
Frame Method. Simulations are displayed with solid circular markers connected 
by a dotted line and experiment data are displayed with empty circu-
lar markers. 
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3.4. Comparison between RFM and dynamic rotating mesh 

The goal of this section is to introduce a moving rotating mesh and to 
study the time step that should be used in this case. We use the same 
domain and mesh as in Section 3.3. In the case of a RFM computation, 
the best practice Numeca (2018) is to use a time step of a 1/20th of a 
rotation. In the case of a dynamic rotating mesh (DRM), we tried two 
time steps: 1/100th and 1/200th of a rotation. 

Performing a first set of computations using the best practices, the 
first results obtained were different and are shown in full and dashed 
lines in Fig. 5. A second set of DRM computations was launched using a 
time step of 1/200th of a rotation, and the results were in agreement with 
the RFM and with the experiment, see dotted line in Fig. 5. The 
remaining difference is due to the unsteady behavior of the flow that is 
described with a better accuracy in the case of the DRM computation. In 
addition, the wake of the rotor outside the cylindrical inner domain is 
different when using DRM computations because the position of the 
turbine change with time whereas in the case of RFM it does not. In 
conclusion, the use of a time step below a 1/200th of a rotation should be 
used in the case of a DRM computation. Reducing the time step size 
further would lead to a greater computational effort. 

4. Fluid-structure computations 

For all fluid-structure computations, the pitch angle used is 20◦ and 
the flow speed is V = 1.73 m/s, as it was the design angle for this tidal 
turbine. 

4.1. Description of the structure 

In the case of the experiment from Bahaj et al. (2007), the blades are 
made of solid aluminum and appears to be rigid. In order to have more 
flexible structures, we modeled the structure as a restricted section of 
the blade, using a beam inside the blade. The structure box is located at 
the largest part of the profile (see Fig. 6). 

The root of the blade is rendered rigid in our computations at a radius 
smaller than 0.08 m, in grey in Fig. 7. For the structure labeled as E4, we 
used a Young modulus of 69 GPa, corresponding to aluminum. The 
Poisson’s ratio is 0.35. We introduce two other Young moduli:E2 = E4

2 

and E1 = E4
4 . The results using the module Young labeled E4 are referred 

to as E4. We do the same for E2 and E1. 
In the local frame of the beam, x is the direction of the neutral axis, y 

is orthogonal of x and corresponds to the flap-wise direction, z is 
orthogonal to x and y and corresponds to the turbine rotation axis. The 
properties of the beam are given with the notations in Table 5. 

The obtained properties are shown in Fig. 7. As E is constant, and the 
other quantities vary for each cross section, we chose to show E × S, the 
axial stiffness, E × Iy the flap wise bending stiffness, E × Iz the rotation 
wise bending stiffness, and G × J the torsional stiffness. 

4.2. Quasi-static computation 

The performance curves were obtained for different structures using 
quasi-static computations. A quasi-static computation consists of 
running a long steady fluid computation, then after each convergence of 
the fluid forces, those forces are applied to the structure and the new 
structural position is computed using a steady state scheme. After a few 
iterations, the forces between the structure and the fluid are in equi-
librium. The obtained result is a steady state. 

In Fig. 8, we can see that the results between the fixed computation 
and E4 are close. The CT is a little bit superior, but the CP is similar. E2 
and E4 are also showing an increasing CT, but there is a decay for high 
TSR, because the blade aligns itself with the flow. CP performances 

Fig. 5. Comparison between RFM and DRM. Full line, dashed line and dotted line represents results obtained respectively with the RFM method, with a rotating 
mesh with a time step of Δt = cycle

100 and with Δt =
cycle
200 . Markers are experimental results from Bahaj et al. (2007). 

Fig. 6. The box reinforced in blue for section at r = 80 mm. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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deteriorates significantly with decreasing stiffness, for the same reason. 
Fig. 9 shows the deformed blade for the different Young moduli at 

TSR 5. E1 has the biggest deflection, and is quite unrealistic. The 
deflection occurs both in the direction of flow and in the direction of 
rotation. 

4.3. Blade-mast dynamic interaction with FSI 

A mast is added to the computation domain. The mast is considered 
rigid, and the hub split into two parts. The first part is fixed and linked to 
the mast, and the second part is rotating with the blades. As previously, 
the domain is split into two domains, but the fixed domain now includes 
the mast and a portion of the hub now. An outline of the mesh is shown 
in Fig. 10. This mesh consists of 7.9 million cells. 

We chose to consider E4 and E2 only, because E1 showed poor per-
formance results and was therefore considered unrealistic (see Section 
4.2). We used a time step of 10− 3 s, which is lower than a 1

200th of a 
rotation period. 

The water turbine is rotating at 21.625 rad/s which corresponds to 
TSR 5. The frequency of the blade passage in front of the mast is 3.44 Hz. 

We record the position and forces on all structural nodes of the blade. 
Acceleration at the tip of the blade is shown in Fig. 11. The start of 

the graph shows the recovery after passing in front of the mast. At t =
3.78 s, the blade arrives near the mast. The acceleration reaches 30 m/s2 

for E2 and 15 m/s2 for E4. The recovery starts with an acceleration 
peaking at 8 m/s2 for E2 and 6 m/s2 for E4 at t = 3.82 s for E2 and 3.81 s 
for E4. The time for recovery (acceleration of 0 m/s2) is approximately 
the same and take 0.17 s. A cycle takes 0.29 s at TSR 5. The first ac-
celeration and its recovery takes ≈ 60% of a cycle. For larger TSR, this 
would be even more noticeable. 

Fig. 12 shows the linear force compared to the average force on 
different sections of the blade. Upper and middle sections show a similar 
behavior: there is a spike in relative negative force when going past the 
mast and a recovery afterward. The bottom portion is much more 
chaotic which is due to vortex shedding. The upper blade portion shows 
some difference between E2 and E4 while for the middle portion this 
difference is less noticeable. For the upper blade portion, the difference 
between E2 and E4 is 2.5 N/m at t = 3.75 s and is almost 0 N/m during 
recovery. 

Fig. 13 shows the absolute forces acting on each structural node of 
the blade. The loading is the greatest at the center of the beam (23 N at r 
= 0.25 m) and the lowest at the root of the blade (0.3 N). Furthermore, 
the loading extends further on the upper part of the blade than on the 
lower part of the blade. On the upper part of the beam the loading is 
almost constant and approximately 15 N (from r = 0.3 m to r = 0.38 m) 
and on the lower part of the beam it evolves almost linearly between the 
maximum value of 23 N–0.3 N at the root of the blade. It is difficult to 
see a transient behavior. Between E2 and E4, it is also very difficult to 
notice a difference. 

Fig. 14 shows the difference between the fluid force and overall time 
averaged force for each structural node of the blade over time. With this 
post-processing, it is easier to see the transient behavior. For blade radii 
greater than r = 0.1 m, there is a negative spike in forces just at the 
passage of the mast. It is then recovered with a more continuous positive 
pressure. The negative spike occurs on the whole blade, especially for E4, 
the upper part for E2 being less spiky. There are very fluctuating forces at 
the root of the blade. 

Fig. 15 shows the Fourier transform of the forces in the frequency 
space. for E2 and E4 the frequency corresponding to the rotation fre-
quency are highly excited as expected. The second mode (≈7 Hz) is 
higher for E2 than for E4. It is the contrary for the third mode (≈10.3 Hz). 
The fourth mode (≈14 Hz) is existent in E2 but barely present for E4. At 
the root of the blade, the frequency we can see are related to the vortices 
advected in the flow. 

Fig. 16 shows the acceleration of each structural node of the blade. 
The acceleration is the greatest at the tip of the blade, as one should 
expect. As seen before, the acceleration peak is half the magnitude for E4 
compared to E2. The most interesting feature is the positive acceleration 
after the peak, called here recovery, which is shorter in duration when 
the stiffness is higher. For E2, the acceleration is non-negligible for a 
large portion of the cycle, while for E4 it concerns less than half of the 
cycle. 

Fig. 17 shows the Fourier transform of the acceleration for each 
structural node of the blade. It is scaled radius by radius to show which 
mode is excited for each configuration. For E2, the first mode – which is 
the frequency of rotation 3.44 Hz – is highly excited, while for E4 it is less 
the case. The second mode (≈7 Hz) is the principal mode to be excited 
for E4 and is also excited for E2. The third mode (≈10 Hz) is highly 
excited for E2. The fourth mode (≈14 Hz) is much more excited for E4 
than E2. There is not a huge difference in spectrum between the tip and 
the root except for very high frequencies. 

Fig. 18 is showing the vortices in the domain using the Q criterion 
(TSR 5 and E2). A zoom at the root of the blade shows a vortex due to the 
cylindrical shape at this section. As stated before, the vortex oscillation 
at the root of the blade has a different frequency than the rotation 
frequency. 

Fig. 7. Structural properties of the beam along the span of the blade.  

Table 5 
Notation for the structure properties.  

Symbol Description 

E Young modulus (Pa) 
ν Poisson’s ratio 
G = E/
(2(1+ν)

shear modulus (Pa) 

S section surface of the structure (m2) 
Iy second moment of inertia for bending flap wise (around y, m4) 
Iz second moment of inertia for bending rotation wise (around z, m4) 
J polar moment of inertia (around x, m4)  
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Fig. 19 shows a cut of the mesh showing the deformed mesh. The 
sliding interface is treated as non-deformable mesh morphing algorithm. 

5. Conclusion 

A dynamic methodology has been developed to perform fluid com-
putations and was validated against results from Batten et al. (2007). 
The results show a good agreement with the experiment especially for 
the design pitch angle of 20◦ where the error is minimal. In order to use a 
dynamic rotating mesh, a criterion for the time stepping rule was found. 

Three different structures were setup and simulated using quasi- 

Fig. 8. Performance curves for different structural properties.  

Fig. 9. Different views of deformed blades (grey: fixed, blue:E4, green:E2, red: 
E1). The left figure is from the turbine side, the middle figure shows the rear 
view, and the right figure shows the top view. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 10. Different views of the initial fluid mesh for the blade-mast dynamic 
interaction. The figure on the left shows the sliding interface with the mesh 
rotating in the inner cylinder and the rest is remaining fixed. The figure on the 
right shows a slice of the mesh viewed from the top. 

Fig. 11. Acceleration of the tip of the blade (in m/s2).  
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static fluid-structure computations. The difference between a flexible 
and a rigid blade was most evident at a TSR greater than 5. These cases 
excluded the most flexible blade (E1) for the rest of the study because it 
produced a poor power curve and thus did not seem suitable for 
production. 

E2 and E4 were then setup with a mast. The rotation of the blades in 
front of the mast induced vibrations. The vibrations and forces were 
recorded for comparison. Different behaviors were highlighted. The 
most flexible of the two structures (E2) showed the greatest displace-
ments and accelerations but the lowest vibrational frequencies. 

For future work, wave induced vibrations could be introduced. There 
are already some experimental work done in this area, for example 
Luznik et al. (2013); Gaurier et al. (2013). An optimization based on 
fatigue analysis could help to maximize the durability of such a turbine. 
For example, the recent work of Finnegan et al. (2020) shows the in-
terest of fatigue loading for tidal turbines. It would also be very inter-
esting to compare against experimental data. 

Fig. 12. Linear force compared to average linear force on different sections of 
the blade (in N/m). 

Fig. 13. Linear force on the blade according to time (in N/m).  

Fig. 14. Linear force compared to average forces acting on the blade according 
to time (in N/m). 

Fig. 15. Frequency analysis of forces acting on the blade.  
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