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a b s t r a c t

The development of bio-inspired robotics has led to an increasing need to understand the
strongly coupled fluid–structure and control problem presented by swimming. Usually,
the mechanical forcing of muscles is modeled with an imposed distribution of bending
moments along the swimmer’s body. A simple way to exploit this idea is to define a central
pattern forcing for this active driving, but this approach is not completely satisfactory
because locomotion results from the interaction of the organism and its surroundings.
Gazzola et al. (2015) have proposed that a curvature-based feedback with a time delay can
trigger self-propulsion for a swimmer without necessitating such a pre-defined forcing. In
the present work, we implement this feedback within a numerical model. We represent
the swimmer as a thin elastic beam using a finite element representation which is coupled
to an unsteady boundary elementmethod for the resolution of the fluid domain. Themodel
is first benchmarked on a flexible foil in forced leading edge heave.

To recover previous findings, an imposed traveling bending moment wave is then
used to drive the swimmer which yields peaks in the mean forward velocity when the
driving frequency corresponds to the natural frequencies of the elastic structure. Delayed,
curvature-based feedback is then applied to the swimmer and produces peaks in the
velocity for delays that differ from the natural periods, associated to its deformations
modes. Finally, a simplifiedmodel is shown to qualitatively describe the origin of the peaks
observed in the feedback swimmer.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The subject of swimming propulsion by means of body undulations has been the subject of considerable research. With
the advent of bio-inspired robotics as an alternative to traditionally propelled robots, there is an ever increasing need to
understand both the strongly coupled fluid–structure interaction and control problem associated with swimming.

Theoretical mechanisms of swimming embraces many aspects of propulsion. In the asymptotic limit of a very slender
swimmer, Lighthill’s elongated-body theory (EBT) (Lighthill, 1960) has seen considerable use and extension (Candelier et al.,
2011; Eloy et al., 2010; Yu and Eloy, 2018). Lighthill initially developed EBT based on the slender body theory of Munk
(1924). This approach is based on the independence of the potential flow about a transverse section of the body from that of
it neighboring sections. Lighthill later used momentum balancing arguments to extended EBT to large amplitudes (Lighthill,
1971). A well-known result of EBT is that thrust production is entirely dependent on the behavior of the tail (Lighthill, 1971).
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Likewise, the case of a 2D swimmer has seen much development since first investigated by Wu (1961, 2007). Numerical
approaches have also been applied to understand particular aspects of propulsion. For example, the work of Carling et al.
represented an early attempt to perform solved, self-propelled swimming with an imposed body deformation (Carling et al.,
1998) which inspired numerous other authors (Leroyer and Visonneau, 2005; van Rees et al., 2013).

To answerwhether fundamentalmechanisms canbe identified in swimming,weneed to understand the selection process
of gait kinematics. Thework of Bainbridge (1958, 1960) was notable in identifying a number of trends in the gait parameters.
Specifically, he noted that the swimming speed was linearly related to the tail beat amplitude, A, which itself appeared to
increase up to a maximum of about 0.2L, where L is the swimmer length (Bainbridge, 1958). Likewise, he recognized that for
a given body length, the swimming speed was proportional to the tail beat frequency f (Bainbridge, 1958). Unfortunately,
he did not try to rationalize these results to swimmers in general. For rainbow trouts, Webb and Kostecki found the that
wavelengthwas independent of swimming speed, but variedwith a power relation to the fish length andwas relatively larger
in small fish (Webb et al., 1984). As an attempt to capture the characteristics of fish swimming, Triantafyllou et al. introduced
the use of Strouhal number, St = fA/U (Triantafyllou et al., 1991, 1993), based on experiments with flapping foils. Notably,
Triantafyllou et al. (2005) showed that for flapping foils an optimum in efficiency is observed around a St of 0.25–0.35. By
exploiting an extensive survey of swimming organisms, Gazzola et al. (2014) characterized the gait of swimmers based on
whether they are in the laminar or turbulent regime. In this work, the authors balanced the propulsive force against the drag
force. In the laminar regime, this was done exploiting the viscous drag of a Blasius flat plate and in the turbulent regime
by balancing the thrust against a pressure drag. This rather simplistic approach was successful in predicting the swimming
speed over seven orders of magnitude of the Reynolds number (Gazzola et al., 2014).

The subject ofmuscle activationhas been the object of considerable research, fromabiological perspective. The earlywork
of Hill (1938) led to a simple mechanical model for describingmuscles. Themuscles receive impulses from a central nervous
system, but their response may be regulated by a proprioceptive feedback signal generated by the stretch of the muscle
itself (Shadmehr and Wise, 2005). The changes in muscle activation for different gaits were investigated by Wardle et al.
(1995). They noted that all three of the species they examined exhibited negative work, whereby muscles are contributing
to stiffen the body to better transmit power to the tail. To model the muscle action, Cheng et al. imposed bending moments
on a beam representation of a swimmer with the hydrodynamics taken into account with 3D waving plate theory (Cheng
et al., 1998). A complete 2D Navier–Stokes simulation of a lamprey modeled using springs (Tytell et al., 2010) has been
developed to study the effects of variations of elastic bending stiffness, fluid density and muscle driving force. In this work,
the kinematic behavior was found to have an optimum combination of muscle force and stiffness for maximizing steady
speed or acceleration. For efficient locomotion, a coupling between the muscle activity and the sensing of the environment
is necessary. Liao et al. showed experimentally that trouts could perceive the von Kármán sheet of an upstream obstacle
and altered their gait to reduce their energy consumption (Liao et al., 2003). To reproduce a neuromechanical system,
Ekeberg et al. (1995) developed simulations of a simplified lamprey neural network. In their model, they incorporated a
mechanical feedback which modulated the central pattern and yielded realistic swimming motions. Gazzola et al. showed
that a simple body curvature feedback model is sufficient to establish a swimming gait without the need for a central
pattern generator (Gazzola et al., 2015). This approach could be exploited to alter the shape of the peaks in the performance.
Such a proprioceptive mechanismmight have biological implications. For example, lampreys are known to have specialized
mechanoreceptors called edge cells along their spinal cords that respond to bending and modify the behavior of the central
pattern generator (Guan et al., 2001).

In this work, a delayed, curvature-based feedback mechanism is numerically explored as a means to locomotion. We
believe that feedback forcing is the first direction to take for giving autonomy to fish like vehicles, because the locomotion
velocity will be adapted to the environment of the swimmer. Our approach follows the philosophy of the work Gazzola et al.
(2015). In this article, the authors have used a simple model derived in Argentina and Mahadevan (2005) for predicting the
pressure imposed on the swimmer. The dynamics of the swimmer is computed using amodal decomposition, which is useful
to study the cruising regime of locomotion. Such amodel is limited to small deformations of the body and restricted to swim
in one dimension. In this manuscript, we relax these restrictions to permit non-stationary regimes and 2D motions of the
fish. The influence of system damping and the feedback delay on the response is studied using a 2D swimmer modeled as
an Euler–Bernoulli beam subjected to fluid forces computed from a boundary element approach. Details of the model are
specified in themethodology section. The swimmermodel is first validated by comparing its predictions to the experimental
results of Paraz et al. (2014), Paraz (2015) and Paraz et al. (2016) in which a flexible sheet is given a periodic heaving motion
at the leading edge. The behavior of a swimmer driven by a traveling bending moment wave, is then illustrated. The results
of feedback locomotion are then presented and contrasted to self-propulsion induced by forced bending moments. Finally,
a simple one degree of freedommodel is shown to qualitatively describe the characteristics of the feedback swimmer.

2. Methodology

We wish to numerically solve the fluid–structure interaction problem associated with the 2D swimmer. The swimmer’s
form is defined by a curve depicting its spine (as shown in Fig. 1). The swimmer body ismodeled by an Euler–Bernoulli beam.
For the fluid part, we approximate the swimmer’s boundaries with 20 panels whose end nodes are shared with the beam.
A 2D, unsteady panel method with a vortex particle representation of the wake (Rehbach, 1973, 1978) is implemented to
numerically solve the fluid problem.
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Fig. 1. The swimmer is modeled by an Euler–Bernoulli beam which is discretized into beam elements and fluid panels while its wake is represented with
point vortices.

The panels are discretized using point vortices located at their extremities. The influence of these vortices is determined
from the 2D Biot–Savart law:

u =
Γ

2πd
(1)

where u is the magnitude of the induced velocity from a point vortex of strength Γ at a distance d from the location of
interest.

Each panel’s pair of vortices is equivalent to a constant strength dipole located at the panel midpoint (Katz and Plotkin,
2001). The non-penetration condition is enforced at the panel midpoint with a Neumann approach:

Un = ∇Φ · n = 0 (2)

where Un is the normal velocity relative to the moving panel, Φ is the velocity potential and n is the panel’s normal vector.
The general idea of panel methods is to determine the solution of a system of the form:

[A]γ = b (3)

where [A] is a matrix describing the influence of each panel on the others, γ is the strength of the singularity elements of
the panels which are the unknowns to be solved, and b are the boundary conditions (2). Solving the above system requires
the inversion of a dense matrix as all panels influence one another. [A] is dependent on the current geometric form of the
swimmerwhich changes over time. As the body deforms slowly, the influencematrix is expected to vary gradually; a Newton
iterative method is used to invert [A] using the prior inverse of [A] as an initial guess (Pan and Reif, 1985; Pan and Schreiber,
1990).

The above inviscid approach is insufficient to generate lift and hence an additional constraint is required to properly
develop the associated circulation. The Kutta condition achieves this by obliging the flow to leave the trailing edge smoothly.
To enforce the unsteady Kutta condition, the vorticity of the trailing edge vertex is removed and transferred to thewake (Katz
and Plotkin, 2001). As a discrete time stepping solutionwill be used, the continuouswake sheet is approximated by point-like
vortices. This approachwas originally developed by Rehbach (1973, 1978) and has seen applications since then for a number
of unsteady aerodynamic problems (Huberson, 1984, 1986; Charvet, 1992; Hauville, 1996; Willis, 2006; Melli, 2008).

The swimmer which is both flexible and slender, is treated as an unconstrained, in-extensible Euler–Bernoulli beam of
uniform massm, stiffness EI , and length L, free to be largely deformed as described in Timoshenko and Woinowsky-Krieger
(1959). The beam is discretized with a small-strain, large displacement, large rotation, co-rotational finite element formu-
lation (Felippa and Haugen, 2005). In the present case, we model a structural damping with a Kelvin–Voigt model (Eldred
et al., 1995; Banks and Inman, 1991), which is proportional to the strain rate. Although we solve the non-linear problem, for
clarity, we present here, in the limit of small rotations and displacements, the swimmer’s structural equation:

m∂tty + ∂ss(ηEI∂tssy) + EI∂ssssy = F (s, t), (4)

where m is the mass per unit length, y is the transverse deformation of the beam (i.e. perpendicular to the locomotion
velocity), s is the arc-length position along the swimmer (see Fig. 1), η is a Kelvin–Voigt damping coefficient with units
of seconds. The beam equation is treated with the non-linearities arising due to large rotations and displacement, but
maintaining constant the bending stiffness and rotational inertia as the beam section is assumed to remain unchanged.

F (s, t) is the sum of the input forces which will include the fluid forces as well as those resulting from imposed bending
moments. We have used the unsteady Bernoulli relation for computing the fluid stresses as depicted in Katz and Plotkin
(2001). The active part is imposed through a propagating wave or a local feedback. ηE has dimensions of Pa s, hence the
Kelvin–Voigt damping models the viscosity of the structure. The swimmer is free at both ends; for the sake of clarity, we
write the boundary conditions, in the small deformation limit:

∂sssy(s=0,L) = 0 ∂ssy(s=0,L) = 0, (5)

The structural problem represented by Eq. (4) is solved with an unsteady, non-linear finite element formulation. The
velocities and accelerations are related to the positions through the Wood–Bossak–Zienkiewicz α scheme (Bossak and
Zienkiewicz, 1980). The overall motions of the swimmer are unconstrained in translations and rotation and hence thrust
production leads to resolved self-propulsion. The structure is discretized using Euler–Bernoulli beam elements with a small
deformation, large rotation formulation. Themassmatrix is discretizedwith a direct, diagonal lumped-matrix approachwith
the mass split between the end beam nodes.
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Table 1
Non-damped, modal frequencies of feedback swimmer, embedded in fluid EI = 30 N m2 , m = 100 kg m−1 ,
ρ = 1000 kg m3 .
Mode F1 F2 F3
Natural frequency (Hz) 1.071 3.126 6.397

While fish are neutrally buoyant, the added mass they are subjected to may be greater than its mass. The added mass
is known to be destabilizing to partitioned fluid–structure coupling schemes in which the fluid and structure are solved
independently in an iterative manner (Badia et al., 2008). The segregated, quasi-monolithic approach of Durand et al. (2014)
is used here; this method can be viewed as a block-LU factorization of the monolithic, coupled system.

Proprioceptive feedback provides a means of correcting for external disturbances and permits modulating the central
pattern generator signal. Gazzola et al. proposed a simple feedback signal for applying a bendingmoment based on the small
deflection approximation of the curvature with a delay (Gazzola et al., 2015). In the present work, a feedback model based
on this idea is developed. As the elastic beam is completely nonlinear, the true curvature of a cubic spline representation of
the swimmer is implemented, unlike in Gazzola et al. The cubic spline representation closely mirrors the shape functions
used for the Euler–Bernoulli beam elements. The amplitude of the feedback model bending moment is given as:

Mf (s, t) = χκ(s, t − τ ) (6)

where τ is the delay, and χ is the strength of the response to the curvature κ . The cubic spline has N-2 equations for N
unknowns. To close the system, two conditionsmust be imposed. As the swimmer is free, the end feedback bendingmoments
and curvature are imposed to zero at the ends in agreement with the boundary conditions (5). To simplify the temporal
scheme, we choose the delay to be a multiple of the time step size ∆t . To allow finer variations of feedback delay, we use
∆t = 0.00125 s.

A one meter long swimmer with uniform linear mass ofm = 100 kg m−1 and linear bending stiffness of EI = 30 N m2 is
used. This linear mass value has been chosen arbitrarily, although a 2 m long swimmer would weigh more than 100 kg (for
example the average mass of a sea lion is 300 kg, while its average length is 2.4 m). In addition, the added mass developed
for locomotion is larger that the mass of the swimmers, such that the linear mass value becomes less relevant in locomotion
behavior (at least for in cruising motions). The swimmer is discretized with 20 beam elements with 20 co-located fluid
elements as shown in Fig. 1. Doubling the panel and element resolution was found to have minimal impact on the predicted
swimmer behavior. The swimmer is immersed in idealized water of density ρ = 1000 kg m−3. The fluid is inviscid and
no viscous drag is directly present. The non-dampened, free natural frequencies of the embedded swimmer are reported in
Table 1. These values were computed using modal analysis. We will study the cases of η = 0.005 s, 0.010 s, 0.020 s. The
feedback amplitude χ is constant along the swimmer’s length, and we varied it from χ = 2.5 N m rad−1 to 7.5 N m rad−1.
The swimmer generates pressure drag only if it is oscillating. To assure that non-propulsive states asymptote to zero velocity,
an additional drag force equivalent to the viscous drag of Prandtl’s turbulent, 1/7 power law boundary layer of a flat plate is
added (Schlichting, 1949).

We are interested to understand the influence of feedback delay and damping on the swimming kinematics bymeasuring
the mean forward velocity V and the frequency response of the swimmer. The structure is slightly bent to initiate the
feedback process. If the feedback is effective in exciting the system, the deformations will grow until an equilibrium is
achieved in a self-propulsive state. If the feedback is not destabilizing the structure, the initial perturbation will dampen
out and no self-propulsion will be generated. The particle wake method releases a particle at each time step to enforce the
unsteady Kutta condition. At the beginning of the computation, the swimmer is immobile and particles would be emitted
on top of one another which will lead to the divergence of the fluid solution. To avoid this non-physical effect, the swimmer
is given a small initial forward velocity of Vinitial = 0.0001 m s−1. Our numerical code is run until a quasi-steady state
is achieved. Frequency domain results are obtained by discrete FFT over 16384 (214) time steps. We have defined the
instantaneous velocity of the swimmer as the average velocity of the 21 nodes. Mean velocities are then found by averaging
over the FFT interval.

In Fig. 2, we illustrate a typical swimmer deformation during one period, by representing its spine with the rigid-body
translations and rotations removed. The curve exhibits a first mode, but it is not symmetric about the swimmer’s mid-length
as evident by the t =

2
8T and t =

5
8T instances compared to the t =

3
8T and t =

7
8T instances. This is because the fluid

load is not symmetrical due the enforcement of the unsteady Kutta condition at the tail on the right end of the swimmer. For
self-propulsion to occur, the symmetry of the fluid forces must be broken so that a net force is generated in a sense of travel.
Once such a symmetry is broken, the feedback naturally amplifies the asymmetry and thrust is sustained when the delay
is in the range of τ that are excitatory. The swimmer experiences an initial transient behavior during which it accelerates
before oscillating in its forward velocity as shown in Fig. 2b. These oscillations dampen to a quasi-steady behavior with
small oscillations at twice the response frequency. We hypothesize that the typical time scale to reach the steady regime is
proportional to the inverse of η. Hence the smaller the damping, the longer will be the transient dynamics.

The hydrodynamic forces acting on the swimmer are generated by the time varying vorticity distribution, which is shown
with the wake particles in Fig. 3. The body exhibits a first mode deformation while experiencing a small periodic rigid-body
pitching rotation. We remark that the vorticity is distributed into four regions along the body length. Near the head region,
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Fig. 2. (a) Deformed swimmer over one period with the head on the left and the rigid-body motions removed. The first free mode is evident, but is not
symmetric about its mid-length due to the hydrodynamic loading. (b) Temporal evolution of the swimmer velocities of the mass center; V⊥ (green), is
the lateral velocity with respect to the average orientation of the deformed swimmer body while V∥ (orange) is the velocity in the sense of the average
orientation, whose steady state average is V . η = 0.005 s, τ

T1
= 0.63 and χ = 7.5 N m rad−1 . The inset in (b) shows the asymptotic dynamics of the two

velocities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the vorticity reflects the flow as it tries to pass around the leading edge due to the head’s relative upward transversemotions.
A leading edge suction is developed which generates a significant portion of the thrust force. Downstream of the head, the
fluid is initially being rotated in a clockwise sense while further aft it is rotating in a counter-clockwise sense. The combined
action of these two regions causes the fluid near the mid-length to be pushed downwards, perpendicular to the sense of
locomotion; this generates an upward inertial force on the swimmer that slows its downward heave motion. When the
maximum deflection has occurred, the circulation weakens and changes signs and the process repeats in the opposite sense.
The trailing edge region enforces the Kutta condition and generates thewake. A classic thrust producing reverse von Kármán
street is observed downstream.

The use of a delayed curvature feedback leads to a distinct behavior compared with other driving mechanisms. To
highlight these differences, we also consider the case of a swimmer with an imposed sinusoidal traveling wave of bending
moment:

Mimposed(s, t) = Mamp(s) sin
(
2π
λ

s − 2π ft
)

(7)

whereMamp is the lengthwise moment amplitude distribution, λ is the wavelength of the wave propagating with frequency
f . Here the imposed bending moment amplitude increases linearly from 0.5 N m at the head to 2.5 N m at the tail. The
wavelength λ is kept equal to the body length and the frequency f is varied between 0.5 Hz and 7.0 Hz so as to include the
first three natural frequencies. Such an imposed wave could be thought of as an input from a central pattern generator. The
same structure and damping characteristics are used as for the swimmer with feedback.

To demonstrate the capability of our numerical model, we first compare it against the forced, sinusoidal leading edge
heave experiment of Paraz et al. (2014), Paraz (2015) and Paraz et al. (2016) in which a flexible, rectangular sheet is given
imposed heave at the leading edge. The experiment mimics a two-dimensional geometry by confining the flow to the width
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Fig. 3. Vorticity distribution of the swimmer and its wake over approximately one period. η = 0.005 s, τ
T1

= 2.17 and χ = 10 N m rad−1 .

Fig. 4. Tail amplitude response Atail normalized by the imposed head amplitude Ahead as a function of the ratio of the heave frequency to the first natural
frequency for a heave amplitude of Ahead = 0.004 m and Reynolds number of 6000. EI = 0.018 (orange), EI = 0.028 (green), EI = 0.053 (blue). Curves:
results of present work. Disks: results of Paraz et al. (2014) . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

of the sheet by the walls of the tunnel. Three values for the stiffness, EI = 0.018, 0.028, 0.053 N m are considered at a
Reynolds number of 6000 and heave amplitude of A = 0.004 m. Further details of the experiment are given in Paraz et al.
(2014), Paraz (2015) and Paraz et al. (2016).

3. Results

3.1. Imposed leading edge heave

The behavior of a flexible sheet subjected to imposed leading edge heave is used first to validate the numerical model of
the fluid and beam. In thework of Paraz et al. (2014), Paraz (2015) and Paraz et al. (2016), the amplitude and relative phase of
the trailing edgeweremeasured over a range of frequencies including the first two naturalmodes of the sheet. Themeasured
ratio of the trailing edge displacement amplitudes to that of the leading edge is given in Fig. 4. Like in the experiments, a
sharp peak in the amplitude appears at the first natural frequency, followed by awider peak at the second natural frequency.
The peak frequencies correspond to the natural frequencies of the sheet, embedded in the fluid. There is closer agreement
for the first peak’s amplitude, whereas the amplitude of the second peak is overpredicted. In the model (Paraz et al., 2016),
the authors included both a linear viscous damping coefficient and a non-linear quadratic damping term to account for the
pressure drag induced by the fluid.

In the present case, we did not include a linear viscous damping, while the pressure drag is implicitly present in ourmodel
rather than imposed, hence it is not surprising to have an over-prediction of the amplitude. Despite this over-prediction, the
good qualitative agreement with the experiments demonstrates the adequacy of the present model.
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Fig. 5. Mean forward velocity V of the imposed bending moment wave as a function of the frequency f normalized by the first natural frequency F1 for
various Kelvin–Voigt damping coefficients. η = 0.005 s (orange), η = 0.010 s (green), η = 0.020 s (red) . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

3.2. Imposed traveling wave bending moment

To highlight the distinct self-propulsive characteristics of delayed feedback, we contrast its properties to that of an
imposed traveling bending moment wave. Consequently, we study the effect of the imposed moment defined in (7). We
first note that the response frequency is always equal to the forcing frequency f . As expected from the leading edge forcing
results, the mean velocity V of the imposed moment exhibits peaks with respect to the driving frequency, as shown in
Fig. 5. The three observed peaks correspond to the first three deformation modes of the swimmer. Such a property arises in
swimmers with imposed bending moments (Gazzola et al., 2015) and flexible foils with forced leading edge motions (Paraz
et al., 2016; Piñeirua et al., 2017). Similarly to low dimensional driven oscillators, the maximum amplitudes increase as the
damping is decreased while the troughs are reduced in depth as the damping increases. As the Kelvin–Voigt model tends to
over-damp higher frequencies, the third mode response is absent for η = 0.020 s. The location of the second peak relative
to the first in Fig. 5 differs from that of the foil with imposed leading edge in Fig. 4. This is attributable to both the difference
in boundary conditions and the difference in the ratio of bending stiffness to beam mass.

3.3. Feedback delay bending moment

We simulate the dynamics of the swimmer driven by the feedback moment (6). Naturally, we expect the relevant
delay value to be linked to a temporal time scale. We associate this time scale to the period T1 of the first deformation
mode. Therefore, the mean forward velocity of the feedback swimmer must depend on η and τ/T1. The feedback propelled
swimmer’s response is distinct from that of the imposed traveling wave swimmer. For a given feedback amplitude, our
simulated model shows that the normalized delay τ/T1 needs to be properly selected in order to induce a non-zero forward
velocity, see Fig. 6. Six local maximum in the mean velocity are evident over the range of τ/T1; their width and amplitude
decrease as the damping increases. For a delay amplitude of χ = 7.5 N mNm rad−1, we remark that the third peak location
is slightly greater than the natural period of the first mode, as τ

T1
= 1.15. Three larger peaks are approximately situated

at ±0.5T1 from each of the three smaller peaks, and this may be explained with the simple model described in the next
section. All six peaks represent amplified responses with a period T close to T1, as seen in Fig. 7. More precisely, for these
six regions, the T/T1 increases as the ratio τ/T1 augments. Hence, the feedback swimmer undulates at the first deformation
mode. Concerning the influence of the damping coefficient, the variation of the responses period decreases as η grows,
because it attenuates the motion away from the peaks. Although, η = 0.02 s induces a slightly shorter period, for the three
larger peaks. Between each pair of peaks is a range of feedback delay ratios for which the swimmer is inefficient in displacing
itself, and the response drops very abruptly (for example near τ

T1
= 0.85, 1.4).

The effect of the damping is summarized as follows. First, large damping reduces the cruising velocity,whichmakes sense,
since input power is lost into the internal friction. Second, increasing η make smaller the regions of parameters for which the
foil swims. Taking the limit of very small damping results in rendering smaller the domains where there is no propulsion. In
addition, the unconstrained amplitude growth leads to complex dynamics resulting from the competition between higher
mode numbers.

Like the damping, the feedback strength has a strong, nonlinear influence on the swimming speed. Here we vary χ

between 2.5 and 7.5 Nm rad−1 while keeping η fixed as shown in Fig. 6b. For χ = 2.5 Nm rad−1 themotions are completely
damped out and no self-propulsion is achieved. As the feedback amplitude grows, the velocity increases non-linearly as it
provides a larger bending moment which in turn elicits an increasing curvature.
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Fig. 6. Mean forward velocity V as feedback delay ratio τ/T1 is varied (a) for different Kelvin–Voigt damping coefficients. η = 0.005 s (orange), η = 0.010 s
(green), η = 0.020 s (blue), for χ = 7.5 N m rad−1 . (b)as χ is varied χ = 3.25 N m rad−1 (blue), χ = 5.0 N m rad−1 (green), χ = 6.25 N m rad−1 (beige),
χ = 7.5 N m rad−1 (orange), for η = 0.005 s . (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 7. Oscillation period over first natural period as feedback delay ratio τ/T1 is varied for different Kelvin–Voigt damping coefficients. η = 0.005 s
(orange), η = 0.010 s (green), η = 0.020 s (blue). χ = 7.5 N m rad−1 . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

3.4. Simplified oscillator model

To explain the appearance of three small peaks with the central peak at a period slightly greater than the natural period
and three larger peaks located approximately ±0.5T1 from the smaller peaks we consider a simpler representation of the
feedback swimmer. As we are concerned with only the first bending mode of the beam, we may approximately reduce the
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Fig. 8. Marginal stability curves of the delayed damped oscillator when the normalized delay is varied for different amounts of damping. The letter ‘‘U’’
labels unstable regions, while the letter ‘‘S’’ labels stable regions. Blue ηδ = 0.0, green ηδ = 0.1, beige ηδ = 0.2, orange ηδ = 0.3 . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

swimmer dynamical equation to that of a damped, delayed, harmonic oscillator, with an equivalent mass, stiffness, and
damping. Let us define δ to be the ratio of the effective stiffness to the inertia and b to be the amplitude of the feedback
normalized by the inertia. Recalling that the Kelvin–Voigt damping is directly proportional to the stiffness then the damped
oscillator equation is:

ÿ + ηδẏ + δy = by(t − τ ) (8)

The reduction of the swimmer beam equation to this low dimensional ODEmight be justified by investigating the dynamics
of an oscillating mode of the system, in the spirit of Llorens et al. (2016). The stability regions of Eq. (8) may be readily
determined using standard techniques (Hu et al., 1998; Driver, 2012).

We numerically computed the instability regions using the semi-discretization method (Insperger and Stépán, 2002,
2003). A stiffness–mass ratio δ = 45.3 s−2 is chosen to match the first natural frequency of the swimmer. The marginal
stability curves of b as a function of τ are shown in Fig. 8, for different values of ηδ. Areas bounded by the curves are regions
where y = 0 is stable while the zones exterior to these boundaries are unstable. We propose to relate the region of stability
of the simple model (see Fig. 6) to the observed peaks for the complete swimming model (Fig. 8). The second, fourth and
sixth velocity peaks in Fig. 6 correspond to the unstable regions for positive values of b. The three smaller velocity peaks in
Fig. 6 corresponds to the unstable zones for the negative values of b : no instability should develop in this regions. This is not
what we observe for the complete model for the swimmer. We interpret it as the resonance with harmonics generated by
nonlinearities; this simple linear model cannot predict such a phenomena. Increasing the damping leads to smaller unstable
regions, similarly to what we observed for the feedback swimmer velocity peaks. The boundaries of the unstable zones are
somewhat wider than the peaks in the velocity, as they extend to larger values of τ , but are qualitatively in agreement with
the feedback swimmer velocity curves. Each new velocity peak starts at feedback delay ratios that matches when the stable
regions for ηδ = 0.0 changes between positive and negative b.

4. Conclusions

The fluid–structure model of the swimmer was shown to be qualitatively matching with the experimental work of Paraz
et al. (2014), Paraz (2015) and Paraz et al. (2016) in which a flexible plate is subjected to forced, leading edge heave. The use
of a curvature proportional, time delayed feedback was found to be sufficient to induce self-propulsion in the swimmer. This
agrees with the observation of Gazzola et al. (2015) that a central generator is not necessary for a self-propulsive behavior.
Nevertheless, the present study reveals that multiple response peaks can occur at the first natural period for delay τ both
above andbelow the period of the firstmode; unlikewhat is reported inGazzola et al. (2015),where each peak corresponds to
a different modal frequency. This is contrasted to an imposed traveling wave bending moment distribution which produces
high forward velocities when the activation frequency is equal to one of the natural frequencies; this could be interesting to
reduce the effect of flesh viscosity, since the lowest frequencies are less damped than the higher ones.

For the range of delay periods and damping coefficients for which the swimmermaintains a first natural period response,
the swimmer’s response may be qualitatively described by the much simpler single degree of freedom damped, delayed
oscillator. Stability analysis of this oscillator with the natural periodmatched to T1 of the swimmer showed that the first and
third peaks observed correspond to the points of minimal stability for positive values of feedback coefficient b. The second
smaller peak corresponds to the second point of minimal stability for negative values of feedback coefficient b.

The use of proprioceptive feedback permits a decentralized approach to propulsion whereby each propulsive unit acts
based only on local information without a central pattern generator input. Proprioceptive feedback may permit to attenuate
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or augment the response of a central pattern generator based on the local state along a swimmer’s body. Such an approach
may be useful for flexible robotic swimmers to improve their performance, particularly in unsteady environments where
fluid forces may perturb the swimmer. It is our hope that this contribution will further the goal to better understand real
swimmer behavior and in enhancing robotic swimmer performance.
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