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Abstract. This paper presents and validates a method to model the static structural behavior of com-

posite hydrofoils with 1D beam finite elements. Classically, 3D solid and 2D shell finite elements are

employed to predict the anisotropic and heterogeneous behaviors of composite hydrofoils. Modeling

a hydrofoil with 1D beam elements drastically reduces its number of structural parameters and the

computational time required for the finite element analysis. The present study investigates the static

structural behavior of four hydrofoils, constructed in the same mold with different mechanical prop-

erties, leading to a specific bend-twist coupling for each foil. The static deformations of the foils are

evaluated experimentally and numerically for different load cases. Two numerical models are con-

sidered, one with 3D solid and 2D shell elements and a second with 1D beam elements. Then, the

results are compared to assess the validity of the 1D finite element model. The comparisons shows

that both numerical models are in good agreement with the experimental results. The results also

confirm that the 1D finite element model is able to correctly describe the impact of the fiber orienta-

tions on the structural responses of the hydrofoils. The computational time savings allowed by the 1D

model are also quantified.

Keywords: Hydrofoil; Equivalent Beam; Laminate; Composite; Bend-Twist Coupling; Non-destructive

testing; Section analysis.

NOMENCLATURE

Bb Strain-displacement matrix of a beam element [-, m−1]
C Corner of the clamping beam

ci Orientation of the clamping beam [-]

ck
i Estimated orientation of the clamping beam at iteration k [-]

D Matrix constraining the warping displacement constitutive matrix [-, m]

Dy, Rx, Rz Displacement and rotation of the corner of the clamping beam [-, m]
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Dxwarp Warping displacements along X [m]

Dywarp Warping displacements along Y [m]

Dzwarp Warping displacements along Z [m]

E Young modulus of isotropic material [Pa]

E1, E2 Young modulus along longitudinal and transversal directions [Pa]

E1, E2, E3 Frame used to express the equivalent properties of a cross-section [-]

f1 First eigenfrequency [Hz]

G12, G13, G23 Shear moduli for orthotropic material [Pa]

g Warping contribution to the displacement field [m]

ge Acceleration of gravity [m s−2]
K Cross-section Timoshenko stiffness matrix [N, N m, N m2]
Kb Stiffness matrix of a beam element [N, N m, N m−1]
Kg Global stiffness matrix [N, N m, N m−1]
Lb Length of a beam element [m]

Lref Reference length considered for the GOM-SCAN acquisition [m]

np Number of points used to acquire a face of the clamping beam [-]

nt Number of acquisition realized to compute uncertainties [-]

Nb Number of beam elements [-]

N1, N2 Shape functions of a beam element [-]

N Shape functions of the cross-section [-]

Q Material constitutive matrix [Pa]

r Translation and rotation of a cross-section [-, m]

S Cross-section Timoshenko compliance matrix [N−1, N−1 m−1, N−1 m−2]
T Corner of the clamping

ti Orientation of the clamping [-]

tk
i Estimated orientation of the clamping at iteration k [-]

T C Vector connecting the clamping to the corner of the clamping beam [m]

T kCk Estimated vector connecting the clamping to the corner of the clamping beam at

iteration k [m]

Tend End time of the quasi-staic FEA [s]

T0, Tmin Initial and minimal value of the time step for a quasi-staic FEA [s]

u Nodal displacements of a discretized cross-section [m]

ui Displacement of a point of the beam along the direction i [m]
u1

i , u2
i Displacements of the nodes constituting a beam element along the direction i [m]

v Displacement field in a cross-section [m]

w Rigid body motion contribution to the displacement field [m]

x, y, z Coordinated of a point of a cross-section [m]

X, Y , Z Point of application of the concentrated load [m]

xcis, ycis Coordinates of the shear center of a section [m]

y Vertical direction [-]

Z Matrix relating the rotation of the section to the displacement of an arbitrary point [-]

γ Translational strain vector [-]

δx, δr Final uncertainty on the position and rotation [-, m]

δxi, δri Averaged uncertainty on the position and rotation [-, m]

δxk
i , δrk

i Uncertainty on the position and rotation at iteration k [-, m]

ε, Small strains tensor [-]

εc, εt Gaussian noise associated to the acquisition of the clamping and the clamping

beam [-]

ζ Rigid translation of a cross-section [m]

θi Rotation of a point of the beam around the direction i [-]
θ1

i , θ2
i Rotations of the nodes constituting a beam element around the direction i [-]
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θ Generalized section forces [N,N m]

κ Curvature vector [m−1]
ν Poisson coefficients of isotropic materials [-]

ν12 Poisson coefficients of orthotropic materials [-]

ξ Local adimensional variable describing the position along a beam element [-]

ρ Density [kg/m3]
σ Stress tensor [Pa]

χ Rigid rotation of a cross-section [-]

Ψ Strain-curvature vector [-, m−1]

AoA Angle of Attack

AR Aspect Ratio

BTC Bend-Twist Coupling

CFD Computational Fluid-Dynamics

DIC Digital Image Correlation

DoF Degree of Freedom

FEA Finite Element Analysis

FEM Finite Element Method

FSI Fluid-Structure Interactions

MPC Multi-Point Constraint

QS Quasi-Static

UD Unidirectional

1 INTRODUCTION

Hydrofoils are increasingly adopted in competitive yacht racing, allowing a significant improvement of

the ships’ performances. To predict their performances, numerical simulations are realized to avoid

prototyping (Cella et al., 2021). For example, several studies have been conducted to optimize the

shape of the AC75’s hydrofoils (Tannenberg et al., 2023; Ng et al., 2025).

For flexible hydrofoils, Fluid-Structure Interactions (FSI) simulations are mandatory since hydrofoil

deformations are significant and their impact on the flow cannot be neglected (Balze et al., 2017).

FSI simulations require to model coupled problems where both flow and structural responses are

solved (Horel and Durand, 2019). For instance, the structural response of a foil can be predicted with

the Finite Element Method (FEM) and the flow can be modeled with standard Computational Fluid

Dynamics (CFD) computations (Boundary Element Method for instance, as in Faye et al. (2024).

FSI simulations can be used to optimize the performance of a hydrofoil by varying its geometric and

structural properties (e.g. chord, thickness, fiber orientations, etc.), as shown in Temtching Temou

(2020) and Sacher et al. (2018).

This paper validates a beam finite element model to study composite hydrofoils. Themethod validated

in this paper is used in Faye et al. (2024) to develop a FSI coupling modelling flexible hydrofoils in a

flume tank. Composite hydrofoils are characterized by anisotropic mechanical properties, which have

to be considered in the Finite Element Analysis (FEA) to correctly capture the nonlinear structural

phenomenons. Depending on the fiber orientation in the composite material, significant couplings

between displacements and rotations may be present and impact the flow incidence seen by an hy-

drofoil submitted to an hydrodynamic loading (Temtching Temou, 2020). Nejatbakhsh et al. (2023)

shows the influence of the BTC on the flutter speed and global stability of an airfoil.

In a FEA, composite hydrofoils are usually modeled with 3D solid and/or 2D shell finite elements

(Temtching Temou, 2020; Mohammed Arab, 2020). In this paper, composite hydrofoils are modelled

with 1D beam elements equivalent to the 3D model. To do so, the three-dimensional geometric

nonlinear equilibrium analysis of the foil, considered as an elastic medium, is divided into a nonlinear
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one-dimensional analysis and a set of two-dimensional linear analysis of the cross sections (Hodges,

2006). To perform such an analysis, several software exist such as ANBA (Feil et al., 2020) or VABS

(Yu et al., 2012) for the section analysis and GEBT (Yu and Blair, 2012) for the one-dimensional

problem solving. In the present study, the tools implemented in Abaqus™ 2022 are used (Dassault

Systèmes, 2022). No implementation is done in Abaqus™, the functionalities provided by Abaqus™

2022 are recent and not yet validated to study hydrofoils. The objective of this paper is to test these

recent features and validate the usage of the equivalent beam approach to study composite hydrofoils.

In a preliminary study of a foil, its behavior in a flow can be studied with a Quasi-Static FSI simulation

(Lothode et al., 2013), this is why the FEA method validated in this paper is static.

In this paper, static loads are applied on different foils and static structural responses are evaluated

with a common 2D/3D FEA, an equivalent beam 1D FEA and an experimental setup. Then, the dif-

ferent results are compared to assess the validity of the equivalent beam model to study composite

hydrofoils. The load cases in the numerical models are defined to match the experimental campaign.

The paper is organized as follows. Section 2 presents the foils considered for the study and the pro-

posed method to numerically model them with equivalent beam elements. Then, Section 3 introduces

the experimental setup used to characterise the static structural responses of the foils. in Section 4,

the setup of the numerical models reproducing the experiments is detailed. The Section 4 also high-

lights the reduction of the computational time made possible by the equivalent beam model. The

numerical and experimental results are presented and discussed in Section 5. This Section 5 vali-

dates the equivalent beam model for the study of composite hydrofoils. In this Section 5, the stresses

computed during the 2D/3D FEA and the 1D FEA are compared, to check if the equivalent beam

model is able to estimate the maximum stress in a deformed foil.

2 METHOD FOR DETERMINING THE EQUIVALENT PROPERTIES OF A COMPOSITE HYDRO-

FOIL

The modeling of a foil as an equivalent beam is considered as it is a slender structure comparable to

a beam. It should be noted that the present study is limited to straight foils without initial twist and/or

curvature.

2.1 Considered Foils

To assess and illustrate themethod presented in this paper, the structural behavior of 4 foils having the

same geometries but different fiber orientations is investigated. These 4 foils are shown in Figure 1.

The foils have been manufactured with the same mold, they are straight and prismatic, and their

geometry is a NACA0015 section (chord of 25 cm) extruded over 1.375 m. The dimensions of the foils

are detailed in Table 2. The cross-sections of the foils, illustrated in Figure 2, are sandwich structures,

constituted of an Airex web foam wrapped in a ply of glass-epoxy taffeta and a unidirectional (UD)

glass-epoxy ply.

The frame (E1, E2, E3) is also represented in Figure 2. In this frame, the flexural deformation around
E2 (principal direction of deformation in the experimental campaign) is denoted κ2 and is positive

when the foil is bent downwards. The torsion took by the foil is denoted κ1 and is positive when the
leading edge of the foil goes up. The signs of κ1 and κ2 are illustrated in Figure 2.

The only isotropic material is the Airex web, with properties detailed in Table 3. Orthotropic and

transverse isotropic behaviors are respectively assumed for the taffeta and UD ply. The properties

of these plies are given in Table 4, where 1 and 2 directions are respectively parallel to the warp and
weft.

Among the 4 foils, only the UD orientation changes, where tested orientations are -10◦, -30◦, -30◦

and -50◦. The fiber orientations are illustrated in Figure 1 with color mark lines, where the fibers are
oriented such as the extrados of a foil is symmetric to its intrados. (Turnock et al., 2023) show that
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this symmetric configuration allows the apparition of a significant BTC.

The different orientations result in different stiffnesses (e.g. flexural, torsional, etc.) and different

coupling intensities (e.g. BTC, extension-torsion coupling, etc.). The expected structural behaviors

of the foils are gathered in Table 5. A similar study has been conducted through the work of Vanilla

et al., 2021. The main difference with the present work is the method used to determine the equiv-

alent properties of a composite structure. Indeed, the BTC intensity of the beam is extracted from

experimental data in the work of Vanilla et al., 2021, whereas in the present work, it is computed with

a section analysis algorithm, detailed in the following Section 2.2.

Leading edge

Trailing edge

Figure 1. Tested hydrofoils.

Glass taffeta ply
Glass UD ply

Airex web

Figure 2. Cross section of the foils.

Table 2. Geometric properties of the foils.

Chord [m] Span [m] Taffeta ply thickness [mm] UD ply thickness [mm]

0.250 1.375 9.45E-02 3.27E-01

Table 3. Mechanical properties of the Airex web.

Material E [MPa] ν [-] ρ [kg/m3]
Airex Foam 25.0 0.400 60

Table 4. Engineering constants of the materials constituting the skin of the foils.

Material E1 [GPa] E2 [GPa] ν12 [-] G12 [GPa] G13 [GPa] G23 [GPa] ρ [kg/m3]
Taffeta 16.0 16.5 0.108 1.81 0.9 0.9 1625

UD 27.4 5.1 0.348 1.81 1.81 0.9 1625
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Table 5. Expected structural behaviors of the 4 foils.

UD ply orientation Expected stiffness Expected BTC intensity

-10◦ high low

-50◦ low medium

-30◦ medium high

30◦ medium high

2.2 Modeling of a Foil with 1D Equivalent Beam Elements

To model a foil with equivalent beam elements, the 3D problem is splitted into a combination of 2D

linear sectional analyses and a 1D nonlinear finite element analysis. Thus, the structural behavior of

a foil is predicted following the procedure outlined below :

• Determination of the equivalent properties of the cross-sections (2D problems);

• Predict the deformation of the foil with equivalent beam finite elements (1D problem);

• Reconstruction of 3D displacements and stresses from the results obtained with the equivalent

beam model.

For this theory to be applicable, the studied foil has to be long and slender. It is also important to

have smooth variations of the cross-sections’ geometry and structural properties along the span. The

methodology for evaluating the equivalent properties of an anisotropic and heterogeneous composite

section (first step) is discussed below.

Figure 3. Illustration of the studied foil with six cuts.

To begin with, a 3D geometry is defined then partitioned into distinct regions corresponding to each

material (UD, taffeta, and Airex in this study). This geometry is then segmented into multiple cross

sections along its span, as illustrated in Figure 3. In the particular case of a prismatic hydrofoil, only

one section analysis is performed because the properties of the cross-sections do not change along

the span of the foil. The definition of a centerline is mandatory to model the foil with equivalent beam

elements. As a first approximation, this line goes through the geometric centers of sections. This

location is then corrected to have a centerline going through the shear centers of each section.

The shear center of a section is defined as the point where any load can be applied without inducing

any twist. The computation of the shear center is done during the next step, which is the section

analysis. During this step, a section is meshed and its elastic properties are integrated over its surface,

to obtain a Timoshenko stiffness matrix K (see Eq. 1) representative of the equivalent properties

of the considered section. The method used in Abaqus™ (Han and Bauchau, 2015) is complex
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and different from the one implemented in VABS (Yu et al., 2012). In VABS, the method uses an

asymptotic development with respect to the axial deformation and the aspect ratio (AR) of the foil.

The K matrix computed in VABS is associated to sectional strains relative to the rigid-body motion

of the section. In Abaqus™, the section analysis is based on the stationarity of the Hamiltonian,

considering the warping displacement and its associated dual impulse. The Green-Lagrange strains

are considered to solve the problem. The K matrix computed with this method is associated to

sectional strains relative to the rigid-body motion and warping of the section. A brief description of the

method is given in the Section 2.3 of this paper.

Two section analyses are required, the first one to compute the shear center of the section (according

to an arbitrary origin, the leading edge in the present study) and the second one to determine the

equivalent properties at the shear center.

The Timoshenko stiffness matrix K computed during the section analysis relates the generalized

internal forces Fi and moments Mi of the section to its generalized translational and rotational strains

(also called curvature vector), respectively denoted γi and κi, such as:


F1
F2
F3
M1
M2
M3

 =


K11 K12 K13 K14 K15 K16
K12 K22 K23 K24 K25 K26
K13 K23 K33 K34 K35 K36
K14 K24 K34 K44 K45 K46
K15 K25 K35 K45 K55 K56
K16 K26 K36 K46 K56 K66




γ1
γ2
γ3
κ1
κ2
κ3

 . (1)

The K matrix developed in Eq. 1 is expressed in the frame (E1, E2, E3), illustrated in Figure 2. In

this frame, the torsional and flexural strains of a foil submitted to a vertical concentrated load are

respectively characterized by γ1 and γ2. The meanings of the diagonal terms of the section stiffness
matrix are given below:

• K11 : Axial stiffness;

• K22 , K33 : Shear stiffness;

• K44 : Torsional stiffness;

• K55 , K66 : Flexural stiffnesses.

K45 and K46 terms quantify the intensity and the sign of the BTC. In the present case, only the term
K45 is relevant because it is the one relating the torsion moment M1 to the flexural strain κ2. It also
relates the flexural moment M2 to the torsional strain κ1 (see Eq. 1). More details on the interpretation
of the BTC is given in Section 5.1, where the equivalent properties of the different foils are discussed.

There are other couplings in the material (e.g. extension-torsion coupling, extension-bending cou-

pling, etc.), but the present work mainly focuses on the BTC because in most cases it has a higher

influence than the other couplings when studying foils in FSI simulations. The shear center of the

section can be computed from the terms of the compliance matrix S, as shown in (Hodges, 2006):

xcis = −Scs
34

Scs
44

; ycis = Scs
24

Scs
44

. (2)
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A shear center computed with the Eq. 2 corresponds to the point of the section where the shear forces

do not induce any twist. In the present case, the twist produced by the bend-twist coupling vanishes.

After the determination of the shear center, a second section analysis is realized with the shear center

as the origin, to evaluate the equivalent properties of the section according to the shear center.

Figure 4. Triangular mesh of the cross section of a foil.

In Abaqus™, the cross sections are meshed with triangular elements WARPF2D3, which allows us to

easily mesh complex geometry (trailing edge of the section for instance). A mesh sensitivity analysis

is performed to determine the optimal mesh for which the values of the matrix K are converged. The

associated mesh is illustrated in Figure 4. The section analysis also computes the mass properties

and the warping functions of the sections. The warping functions are used to compute the Green

strain and the Cauchy stress tensors in a section of an equivalent beam element.

Once the section analysis is done, the next step is the reconstruction of 1D finite beam elements from

the section stiffness matrices. The reconstructed beam elements must be able to model the couplings

in the material. To do so, the section matrix can be integrated along the length of the beam element,

as explained in (Stäblein and Hansen, 2016). In the present work, Abaqus™ 2022 is used to construct

the equivalent beam as an assembly of beam elements. For each beam element, a stiffness matrix

Kb is computed from the cross-section stiffness matrix K and the strain- displacement matrix Bb of

a beam element. Then, a global stiffness matrix Kg is assembled from the contribution of each beam

element stiffness matrix. Kg is a tensor of dimension [6(Nb +1)]× [6(Nb +1)], where Nb is the number

of beam elements considered to discretize the foil, and expressed as :

Kg =
Nb∑
b=1

∫
Lb

BT
b KBbdz. (3)

In Eq. 3, Lb represents the length of a given beam element. Bb depends on the choice of the beam

element in Abaqus™ because it is constructed from the shape functions of the beam element. In

Abaqus™ 2022, the only beam element considering the cross-section stiffness matrix K as an input

is the element B31, a linear Timoshenko beam element with unconstrained warping. Therefore, in

this paper, all the numerical results associated with the equivalent beam approach are obtained with

B31 elements. Once the global stiffness matrix Kg is computed, the boundary conditions and loads

are defined, and a FEA is performed. Following the FEA, translation and rotation vectors are obtained

for each node, leading to the equivalent beam deformations. Section stresses and strains are also

computed for each element. The deformed 3D geometry is extrapolated from the nodal displacements

and rotations with the linear shape functions of a Timoshenko beam element. The shape functions

are chosen according to the type of beam element used in the FEA. To reconstruct a 3D deformed

geometry (considered as a point cloud), each of its points is projected on the closest beam element:

• The 3D point is projected on a node of a beam element → its displacement is computed from

the associated nodal displacement, nodal rotation and warping functions of the section;
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• The 3D point is projected on an arbitrary point of a beam element → nodal displacement and

rotation are computed from the displacements and rotations of the nodes and the linear shape

functions → the displacement of the 3D point is computed accordingly.

The linear shape functions of a Timoshenko beam element (Oñate, 2013) are presented below in

Eq. 4, where ui is the translation along the axis i and θi is the rotation around the axis i. Thus, the
index i can be x, y or z.

ui = N1u1
i + N2u2

i ; θi = N1θ1
i + N2θ2

i (4)

Eq. 4 relates the displacement and rotation of an arbitrary point of a beam element with the displace-

ments and rotations of its two nodes. The position of an arbitrary point belonging to a beam element

is described by a local adimensional variable ξ varying between 0 and 1. The shape functions N1 and
N2 depend on this variable and are given below:

N1(ξ) = 1 − ξ; N2(ξ) = ξ. (5)

Because the sections of a foil are perpendicular to its centerline, the displacements of the points of a

section are all projected on the same beam element and thus, their displacements are computed from

the same nodal displacement (which can be the result of an interpolation of two nodal displacements).

Thus, the motion of the sections is assumed to be rigid during the reconstruction of the 3D deformed

foil. To consider the deformation of the sections in the reconstruction of the 3D geometry, the warping

displacement of a section can be computed in Abaqus™ 2022 from the warping functions and the

deformed beam elements. If the warping displacement of the sections is not computed during the 3D

reconstruction, the sections of the foil have a rigid body motion. Abaqus™ also computes the Green

strain and the Cauchy stress tensor in the section, which are useful to conclude on the structural

integrity of the foil under a given loading.

2.3 Section Analysis Algorithm

The section analysis method used in this paper is the one implemented in Abaqus™, proposed by

Han and Bauchau, 2015 and based on the work of Giavotto et al., 1983. The methods lead to identical

results and their major difference is the starting point used to determine the governing equations of

the problem. In (Han and Bauchau, 2015), they are derived from the canonical approach of Hamilton,

whereas in Giavotto et al., 1983, it is derived from the principle of virtual work. For simplicity, the

theory of the cross-section analysis is presented using a notation close to the one of Giavotto et al.,

1983. Every symbol written is bold is assumed to be a tensor and the coordinate system is presented

in Figure 4.

Firstly, the displacement of a point of the cross section v is decomposed into a rigid body motion

w and a warping displacement g. The rigid motion is then expressed from the three components of

the rigid translation χ and rotation φ of the cross section (for a given reference point). The warping

displacements at a given point can be expressed from the shape functions N of the elements used to

mesh the section and its nodal displacements u (i.e warping displacements). Thus, the displacement

of a point of the cross section can be written as:

v(x, y) = w + g = Z(x, y)r + N(x, y)u, (6)

where Z and r are defined as:
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Z(x, y) =

Ñ
1 0 0 0 0 −y
0 1 0 0 0 x
0 0 1 y −x 0

é
, (7)

and

r = [χx; χy; χz; φx; φy; φz]T . (8)

The deformations of the cross section are associated to a strain-curvature vector Ψ, containing the

generalized strain and curvature measures, respectively denoted γ and κ and defined as:

Ψ = [γx; γy; γz; κx; κy; κz]T , (9)

γx = ∂χx

∂z
− φy; γy = ∂χy

∂z
+ φx; γz = ∂χz

z
, (10)

κx = ∂φx

∂z
; κy = ∂φy

∂z
; κz = ∂φz

∂z
. (11)

The details of the terms of the curvature and strain of the section comes from the classical beam

theory. Such results can be found in Andersen and Nielsen (2023). For convenience, the equation

above can be written in its matrix form:

Ψ = (Tr + ∂

∂z
)r; Tr =


0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (12)

From the expression of the displacement of an arbitrary point of the cross-section, the strain, consid-

ered small, can be written such as:

εij = 1
2(∂vi

∂j
+ ∂vj

∂i
). (13)

The strains and stresses vectors in the section, respectively denoted ε and σ are expressed using

the Voigt notation, meaning that:
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ε = [εxx; εyy; 2εxy; 2εxz; 2εyz; εzz]T , (14)

σ = [σxx; σyy; σxy; σxz; σyz; σzz]T . (15)

These two vectors are related by Hooke’s law σ = Qε, where Q is the material constitutive matrix.

Before writing the governing equations of the problem, the displacements of the nodes constituting

the section have to be constrained. The warping displacements expressed in Eq. 6 are coupled to the

rigid motion of the sections, meaning that the warping contributes to the rigid body motion, which is not

physical. To correct this, the following set of constraints for the displacements and their derivatives is

defined: Å
DT 0
0 DT

ãÅ
u
∂u
∂z

ã
=
Å

0
0

ã
. (16)

D is defined below, with n corresponding to the number of nodes in the mesh of the cross-section:

D =


1 0 0 ... 1 0 0
0 1 0 ... 0 1 0
0 0 1 ... 0 0 1
0 0 y1 ... 0 0 yn

0 0 −x1 ... 0 0 −xn

−y1 x1 0 ... −yn xn 0



T

. (17)

To determine the governing equations of the problem, the internal forces θ are defined, such as θ =
[Tx; Ty; Tz; Mx; My; Mz]T , where Ti and Mi respectively represent the internal forces and moments.

For instance, in the present coordinate system, Tz represents the axial internal force in the section. It

is shown in Giavotto et al. (1983) that the expression of the derivative of θ can be computed as:

∂θ

∂z
= T T

r θ. (18)

Han and Bauchau (2015) shows that, using Hamilton’s canonical approach, the section stiffness

matrix can be computed by taking into account the warping effects in the section. The resulting matrix

is a Timoshenko matrix relating the forces applied on the section to its strains (see Eq. 1). The

meaning of the terms of this matrix is discussed in Section 5.1.

3 EXPERIMENTAL SETUP

In this Section 3, the experimental setup used to characterize the static displacements of the foils for

several load cases is detailed. The experimental setup is illustrated in Figure 5 and Figure 6, where a

foil is cantilevered, and masses are suspended to it at several locations. To have the best clamping

possible, the foils have a parallelepiped heel (see Figure 5) which is rigidly linked to a support into an

aluminum block. To avoid any motion of the foil, the aluminum block has screws which are tightened

with a torque wrench to reproduce the same clamping condition for each foil. A clamping beam is used

to suspend the masses to the foil (see Figures 5 and 7), this allows the application of eccentric forces

on the foil and thus induces a significant torsion that is then compared with the numerical results. The

clamping beam is 1 m long, 10 cm tall and 4 cm wide.
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Clamping

Clamping beam

Foil

Suspended mass

T
C

Figure 5. Experimental device used to study the mechanical properties of the foils.

GOM 5M

GOM-SCAN

Figure 6. Cameras used to capture the shape of the upper surface of the foils.

Figure 7. Clamping beam used to suspend the masses to the foil.
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In Figure 6, no loads are applied and there are two recording devices which are used to compute the

local and the global displacements of the foils. The local displacements are recorded with the GOM

5M system (on the left in Figure 6) and the global displacements are measured with the GOM-SCAN

system (on the right in Figure 6). The measurement principles are detailed in the following of the

present Section 3.

3.1 Global Displacement

In this Section 3.1, the measurement method associated with the GOM-SCAN is presented. The

GOM-SCAN is a mobile scanner able to acquire the shapes of the foils for different loading cases.

To acquire the shape of a foil, the GOM-SCAN system projects light fringes on its upper surface

and with its cameras, it is able to determine the shape of the surface from the fringe deformations.

A preliminary calibration of the scan is made before the measurements. Because this scanner is

mobile, it requires landmarks that are located all along the upper surface of the foils. With at least 3

visible points per scan, the GOM-SCAN is able to reconstruct the upper surface of a foil within 10 to

20 acquisitions at different locations. The corner of the clamping beam is also acquired by the scan (in

white in Figure 5). Its displacement and rotation with respect to the clamping are recorded for each

load case and compared with the results obtained numerically. The displacements are measured

according to a reference configuration where the clamping beam is installed on the foil but no loads

are suspended to it. Thus, the foils are submitted to their own weights and the weight of the clamping

beam, which is about 3.54 kg. This reference configuration is chosen to reduce the uncertainties on

the measurement associated with the installation of the clamping beam.

Figure 8. Illustration of the uncertainties estimation for nt = 33, np = 6 and εt = εc = 2.0E − 02.

For a given foil and a given loading case, the GOMSCAN returns the deformed shape of the upper

surface of the foil and the deformed position of the corner of the clamping beam. For its measure-

ments,the GOM-SCAN constructs an arbitrary coordinate system which does not match the one of the

numerical computations. To compute the displacements from these results in the numerical reference

frame (see Figure 5), a program is used to construct two frames, a first one at the clamping and a

second one at the corner of the clamping beam corner. Knowing the position and the orientation dif-

ferences between the two frames, the displacement and rotation of the corner of the clamping beam

is deduced. Because the clamping device and the corner of the clamping beam are not perfectly

parallelepiped, there are significant uncertainties on the computed values. The uncertainties on the

frame acquisitions are illustrated in Figure 8.

εt and εc are the amplitudes of Gaussian noises used to simulate the error associated with the manual

acquisition of the frames. The half amplitude of the Gaussian noise represents the ratio between the

218

Downloaded from http://onepetro.org/JST/article-pdf/10/01/206/5245304/sname-jst-2025-10.pdf/1 by guest on 08 September 2025



precision of the measure and a characteristic length of the area where the measure is carried out

(around 20 cm in the present study). To evaluate the uncertainties, two analytical frames are defined,

corresponding to the two corners of reference. The two frames are characterized by an origin and an

orientation. The corner of the clamping and the corner of the clamping beam are respectively defined

as (T ,ti) and (C,ci) where i represents the three directions in space (i.e. i = 1, 2, 3). For each plane
of each frame, a number np of points is generated with a centered Gaussian noise for the out-of-plane

component. Because the corner of the clamping beam is more parallelepiped than the corner of the

clamping device, the corner of the clamping beam is easier to capture and thus, it is characterized by

a smaller Gaussian noise. The determination of the noise amplitude is discussed later in this section.

The Gaussian noises considered at the clamping and the clamping beam are respectively denoted

εc and εt . After the generation of the noisy points, for each frame, there are 3np imperfect points

from which an approximated frame can be computed with a least square regression. Then, with the

theoretical frame, a difference is computed for the origin of the estimated frame and its orientation.

This protocol is repeated nt times to simulate a great number of acquisitions and determine the mean

error for a measurement. In Figure 8, the frames of reference are illustrated in black. In this same

Figure 8, 33 frames are generated, and the imperfect points (in green, blue and red) are shown for

the first and the last iteration. The 33 generated frames are represented in orange and the kth frame

is represented in red. To clearly illustrate the method in Figure 8, a noise of 2E − 02 is considered for
εc and εt .

For each iteration k and each direction in space, the uncertainties on the position δxk
i and rotation δrk

i

of the point C with respect to the point T (see Figure 8) are computed. The formulas used to compute

the uncertainties are given below, where i = 1, 2, 3:

δxk
i

Lref
= −T kCk · tk

i − T C · ti

‖T C‖
, (19)

δrk
1 = 90

π

Ä
arccos

ÄÄ
ck

2 −
Ä
ck

2 · ck
1
ä

ck
1
ä

tk
2
ä

+ arccos
ÄÄ

ck
3 −
Ä
ck

3 · ck
1
ä

ck
1
ä

tk
3
ä

(20)

− arccos ((c2 − (c2 · c1) c1) t2) − arccos ((c3 − (c3 · c1) c1) t3)) .

The expression of δrk
2 and δrk

3 can be retrieved by performing a circular permutation of the Eq. 20.

After the nt iterations, the mean uncertainties for each displacement and rotation component are

computed, such as:

δxi

Lref

∣∣∣∣
mean

=
mean

(
δxk

i

)
Lref

; δxi

Lref

∣∣∣∣
std

=
std

(
δxk

i

)
Lref

, (21)

δri|mean = mean
Ä
δrk

i

ä
; δri|std = std

Ä
δrk

i

ä
. (22)

Finally, the relative uncertainty on the displacement and the absolute uncertainty on the rotation are

computed with:

δx

Lref
= max

Ç
δxi

Lref

∣∣∣∣
mean

± 2 δxi

Lref

∣∣∣∣
std

å
, (23)

δr = max (δri|mean ± 2 δri|std). (24)
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During the post-processing of the results, the points belonging to the faces of each corner are selected

by hand, the optimal value found for np is 6. It corresponds to the minimal number of points per face

needed to find a consistent frame for a given corner.This post-processingmethod is one of the sources

of uncertainty. The half amplitude of the Gaussian noise represents the ratio between the precision

of the measure and a characteristic length of the area where the measure is carried out (around 20

cm in the present study). To compute the displacement of the foil, two acquisitions of its shape must

be performed. In the first one, the foil is scanned in its reference configuration (i.e. clamping beam

without mass suspended to it), this scan is only done once for each foil. Then, for every load case,

the shapes of the loaded foils are acquired, and their displacements are computed according to the

reference configuration. To compute the Gaussian noise εc associated with the clamping beam, a

reference length of 5 cm is considered and the precision of the measure is about 0.01 mm. At the

clamping, the reference length of the measure is 20 cm and its precision is 0.2 mm. Thus, the value
for εc is 2E − 04 and the value of εt is 1E − 03. The precision of the measure is lower at the clamping
because of machining planarity errors, which are higher at the clamping. Table 6 gives the estimated

uncertainties computed for a single acquisition.

Table 6. Estimated uncertainties for a single acquisition of a displacement with the GOM-SCAN.

εc εt
δx

Lref
δr[◦]

2.00 × 10−4 1.00 × 10−3 2.01 × 10−3 1.68 × 10−1

Because the shape of a foil is acquired twice, the uncertainties on the results are the double of the

values presented in Table 6. In the present case, the absolute uncertainty on the rotation is about

0.336◦ and the relative uncertainty on the displacements is about 4E − 03.

3.2 Local Displacement

In this Section, the GOM 5M, which computes a local displacement field in a small area, is presented.

In the present case, the area scanned by the GOM 5M is a rectangle with the dimension 100 × 120

mm located on the upper surface of the foils.

Figure 9. Speckle used by the GOM 5M to compute deformations.
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The measurement area for the GOM 5M is chosen to maximize the computed strains. For a can-

tilevered foil, themaximum strain occurs near the clamping. The GOM5M acquisition area is therefore

located between Z = 0.25 m and Z = 0.35 m, where measured displacements are maximized without
encountering any acquisition problems due to the clamping. In the acquisition area, a random speckle

(see Figure 9) is generated to create markers for the GOM 5M. Then, with Digital Image Correlation

(DIC, see (Jorge et al., 2022)), the GOM 5M computes a displacement field from an acquisition of the

speckle in a reference configuration and an acquisition in the deformed configuration. To characterize

a mean strain of the foil near the clamping, the difference between the displacements along the span

of the extremities of the speckle (see Z = 0.27 m and Z = 0.35 m in Figure 9) is computed.To reduce

the uncertainties, the displacement field is computed as the average of 6 acquisitions. As in Section

3.1, the reference configuration considered is the foil with the clamping beam installed but without

mass suspended to it. This suppresses the potential errors caused by the installation of the clamping

beam on the foil. After the measure, the GOM 5M returns a cloud point with a value of displacement

along the span at each point. The displacement of a point is computed from a DIC performed on a

rectangle of 11 per 19 pixels. Therefore, the values of displacement are averaged around their zone

of interest and the uncertainty of the value is defined as the standard deviation of the displacement in

the zone of interest.

4 FINITE ELEMENT MODEL OF THE FOILS

In this Section 4, the two finite element models used to capture the deformation of a foil for a given

load case are presented. The load cases and boundary conditions in the finite element models are

chosen to match as much as possible the experimental load cases (presented in Section 3). The

method to evaluate the displacement of the foil is also derived from the experimental protocol.

In the experimental campaign, illustrated in Figure 5, the foils are cantilevered and their structural

responses are evaluated for several concentrated load cases. A clamping beam is used to suspend a

mass to the foil, this allows the application of eccentric forces on the foil and thus induces a significant

torsion that is then compared with the numerical results. The experimental values of displacement

of the foil are measured at the white corner of the clamping beam (see Figure 5) and they are mea-

sured relatively to a reference configuration where the clamping beam is installed but no masses are

suspended to it.

4.1 Finite Element Model 3D

In this paper, the 2D/3D finite element model is referred to as Abaqus 3D. In the 2D/3D FEA, the foil is

decomposed in two parts, a first one containing the Airex foam web, meshed with 3D solid elements.

The second part is meshed with 2D shell elements and represents the skin of the foil (taffeta and UD).

The 2D shell elements used for the skin drastically reduce the size of the structural mesh because

the skin is not discretized along its thickness. The 3D solid elements used to model the web are 8

node brick elements C3D8R. A mesh sensitivity analysis has been performed to provide the optimal

number of elements to correctly capture the behavior of the foils. The meshed web, illustrated in

Figure 10, is made of 700 000 elements. The optimal mesh for the skin is constituted of 60 000

elements (see Figure 10). The 2D elements used for the skin are triangular Kirchhoff shell elements

STRI3. On these elements, a composite layup is defined to specify the thickness of the layers and the

fiber orientations. A Tie constraint is also defined to link the skin to the web. This constraint imposes

the surface of the web to have the same motion as the 2D skin of the foil.

To match the experimental loading case in Abaqus™, the skin of the foil is partitioned to represent

the contact surface between the clamping beam and the skin (see Figures 5 and 7). Then, with a

multi-point constraint (MPC), this surface is constrained to follow a reference point as a rigid body

(loadingPoint in Figure 11) and a concentrated load corresponding to the suspended mass is applied

on this reference point. To model the clamping of the heel, the displacement of the skin and the web
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are constrained to be null in Z = 0 m. This is illustrated in Figure 11 with the blue and orange arrows.
In Figure 11, the partition corresponding to the clamping beam is located at X = 0.8 m. There are two

more reference points in the model, corresponding to the center of gravity of the clamping beam and

its corner. These points are rigidly linked to the loadingPoint with a MPC and are respectively used

to take into account the weight of the clamping beam (3.54 kg) and to measure the displacement and

rotation of the corner of the clamping beam. The displacement is recorded at this particular point to

be compared with measurements. A gravity load is also defined (g = −9.81ym/s2, where y is defined

in Figure 11) to consider the weight of the foil.

Figure 10. Finite element mesh of the web (left) and the skin (right) of the foils.

Figure 11. Illustration of the loading case and boundary conditions in Abaqus™ for the 3D model

(left) and the equivalent beam model (right).

The skin of the foil is also partitioned near the clamping to easily extract local displacements between

Z = 0.27 m and Z = 0.35 m. Such results are compared with experimental results given by the

GOM-5M in Section 5.4.

Finally, the nonlinear FEA is solved with a specific Quasi-Static (QS) resolution based on a dynamic

Euler Scheme (Hairer et al., 2008), as presented in the work of Sacher et al., 2020. This scheme is

used because its natural damping helps the convergence towards a nonlinear static equilibrium. To

set up the model in Abaqus™, a QS Dynamic Implicit Step is defined where the total computation time

Tend , the initial time step T0 and the minimal time step value Tmin have to be defined. To compute

these values, an initial modal analysis is performed to extract the first eigenfrequency of the foil f1 .
Then, the specific times are computed such as:

Tend = 3
f1

; T0 = 0.05
f1

; Tmin = T0.10−4. (25)

Finally, to ensure the exact static convergence, a standard Newton-Raphson nonlinear static resolu-
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tion is performed, meaning that the geometric nonlinearities are modelled.

4.2 Finite Element Model 1D

In the present study, the 1D finite element model is referred to as Abaqus 1D. In the 1D finite element

model, a single section analysis is performed per foil because they are prismatic. The integration of

the mechanical properties of a section is made with the mesh shown in Figure 4, which is composed

of 12 000 elements. The optimal refinement of this mesh has been determined with a mesh sensitivity

analysis. The elements used to mesh a section are triangular elements WARPF2D3, that capture the

in-plane and out-of-plane warping of the sections. As explained in Section 2.2, the section analysis

is realized at the shear center of the sections. The computed shear centers are functions of the UD

orientation, and their computed values are presented in Table 7 for each foil. The coordinates of the

shear centers are expressed in the frame presented in Figure 4. In this frame, the origin is located at

the leading edge of the foil.

Table 7. Shear centers of the 4 foils sections.

UD Orientation Shear Center (X, Y )
-50◦ (-92.56, 0.00) mm

-30◦ (-92.11, 0.00) mm

-10◦ (-94.46, 0.00) mm

30◦ (-92.11, 0.00) mm

The equivalent foil modelled in Abaqus™ is made of 70 beam elements, this number of elements

was determined with a mesh sensitivity analysis. The beam elements used in the 1D finite element

model are 2 nodes linear Timoshenko beam elements, denoted B31 in Abaqus™. The nodes of the

beam elements go through the shear centers of the sections of the foil. The FEA is computed using

a standard Newton-Raphson resolution, thus, modelling the geometric nonlinearities. A clamping

condition is defined at the base of the foil (Z = 0m) and a concentrated load is applied as in the 3D
finite element model. To do so, a reference point is defined (loadingPoint in Figure 11) to model the

point where the mass is suspended. Then, with a MPC, the reference point is rigidly linked to the

beam elements corresponding to the location of the clamping beam along the span of the foil (see

yellow circles in the right part of Figure 11). The loadingPoint is also rigidly linked with a MPC to

the reference points CG_clampingBeam and cornerClampingCarcan, which are respectively used to

model the weight of the clamping beam and to easily record the displacement of the corner of the

clamping beam. The loading case and the boundary condition are shown in Figure 11. Finally, to

apply the gravity, a set of nodes going through the centers of mass of the section is created. These

nodes are then rigidly linked with MPC to the nodes of the equivalent beam elements and a gravity

load representative of the weight of the foil is applied on each of these nodes. The gravity is applied

this way because the mass center of the section of a foil is different from its shear center.

4.3 Computational Time

The 1D FEA is considerably faster than the 3D FEA. This is mostly due to the number of elements

which is 10 000 times higher in the 3D FEA. To illustrate the time saved when using the equivalent

beam approach, different computational times for a FEA performed on the foil with the -50◦ UD ori-

entation are provided in Table 8. The load case defined in this FEA is chosen to be representative

of the load cases considered in this study. A mass of 5 kg is suspended from the foil at the location

(0.2, 0.0, 0.8) m, expressed in the frame defined in Figure 11.
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Table 8. Computational cost of the FEA with the two methods for the -50◦ orientation.

Processors number Computational time [s]

Abaqus 3D 16 1.4E+05

Section analysis 1 6.1E+00

Abaqus 1D 1 1.0E-01

3D geometry reconstruction 1 1.2E-01

Warped section reconstruction 1 4.4E+01

The computational time associated with Abaqus 1D in Table 8 is split in 4 contributions, the section

analysis, the 1D FEA, the reconstruction of the 3D geometry from the shape functions and finally the

determination of the stress, displacements and deformation in the warped section. To reconstruct a

3D geometry while considering the warping of the sections, it is mandatory to reconstruct the warped

sections at each beam node. Meaning that, in the present work, the Warped section reconstruction

step is performed 71 (the number of beam elements considered is discussed in the previous Section

4.2. Thus, the time required to study the 3D deformation of the foil with beam elements considering

the warping is about 50 minutes.

If the warping of the section is neglected, this time becomes 6.3 seconds. The 3D FEA is realized

with 16 processors and despite that, the equivalent beam method is still faster, whether the warping

is neglected or not. Abaqus 1D is 20 000 times faster than Abaqus 3D if the warping is neglected

and it is 50 times faster when the warping is considered. The results illustrate the benefits of the

equivalent beam method to save time in structural computations. The time saved by the equivalent

beam method is even higher in FSI computations because the section analysis is only performed

once at the beginning of the computation. For more complex foils with varying sections, the section

analysis step would obviously require more computational time since in the present case, the section

analysis is only done once.

5 RESULTS AND DISCUSSIONS

5.1 Section Stiffness Matrix

In this Section 5.1, the stiffness matrices obtained during the section analysis are discussed. Some

terms of these matrices are then used to explain the structural behavior of the foils according to their

UD orientation. Table 9 provides the significant terms of the Timoshenko section matrices for every

foil. In the frame (X, Y, Z) (see Fig 3), the torsion Rz flexural rotation Rx are respectively associated

to κ1 and κ2.

Table 9. Equivalent properties computed for the 4 experimental foils.

UD Orientation −50◦ −30◦ −10◦ 30◦

K11 [N] 1.91e+06 3.16e+06 5.14e+06 3.16e+06

K22 [N] 8.05e+05 8.26e+05 4.53e+05 8.26e+05

K33 [N] 7.65e+04 6.83e+04 6.56e+04 6.83e+04

K44 [N m2] 6.18e+02 6.83e+02 3.55e+02 6.83e+02

K55 [N m2] 3.36e+02 5.90e+02 9.52e+02 5.90e+02

K66 [N m2] 1.13e+04 1.56e+04 2.90e+04 1.56e+04

K45 [N m2] 1.03e+02 3.37e+02 2.14e+02 -3.37e+02

In Table 9, the axial and flexural stiffnesses K11, K55 and K66 are decreasing when the fibers orien-
tations are getting away from 0◦, which is an expected behavior when studying composite materials.
The torsional stiffness K44 is maximum for the UD orientation of ±30◦. This structural behavior is also
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expected as Bishay and Aguilar, 2021 shows that the maximal torsional stiffness is reached for a fiber

orientation of ± 25◦.

To interpret the bend-twist coupling value K45, it is relevant to develop the expression of the section
torsion moment, from the Eq. 1:

M1 = K14γ1 + K24γ2 + K34γ3 + K44κ1 + K45κ2 + K46κ3. (26)

From Eq. 26, the torsion strain κ1 is expressed as :

κ1 = 1
K44

(M1 − K14γ1 − K24γ2 − K34γ3 −K45κ2︸ ︷︷ ︸
Contribution of the
bending to the twist

−K46κ3). (27)

Eq. 27 shows that for a BTC value K45 > 0, a negative flexion (κ2 < 0) induces a positive torsion

(κ1 > 0), proportional to K45. In the frame E (see Figure 2), the flexion is negative when the foil is

bent upward. A positive torsion in the frame E corresponds to an upward displacement of the foil’s

leading edge, indicative of a nose-up deformation. In a FSI problem, such behaviors can be used to

generate stable or unstable foils. A stable foil sees its angle of attack (AoA) decrease with increasing

bending, while an unstable foil sees its AoA increase with increasing bending. Thus, in the present

coordinate system, if K45 > 0, the foil is considered unstable. Indeed, if the foil is in a flow with a

positive angle of attack, the hydrodynamic forces induce an upward deformation (κ2 < 0), increasing
the angle of attack due to the twist angle induced by the BTC (κ1 > 0). The sign of the BTC define

the stability of the foil and its magnitude the intensity of the additional torsion associated with BTC.

Figure 12 illustrates, for the considered foil geometry, the relation between the orientation of the UD

ply, the sign of the BTC and the stability of the foil.

stable K45 < 0 neutral K45 = 0 unstable K45 > 0

Figure 12. Illustration of the influence of fiber orientation on the stability of a foil.

5.2 Global Deformation: Influence of the Fiber Orientation

In this Section 5.2, experimental results are compared with numerical results, given by two finite

element models, detailed in Section 4. As stated in this Section 4, Abaqus 3D and Abaqus 1D are

respectively referring to the 2D/3D finite element analysis (FEA) and the equivalent beam model.
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To validate the equivalent beam model for different UD orientations, the displacement of the corner

of the clamping beam is studied experimentally and numerically for each foil and for 4 load cases

that are given in Table 10. The positions of the mass are given in the coordinate system shown in

Figure 13. In this frame, the position (0.0, 0.0, 0.0) m corresponds to the leading edge of the foil at the

clamping.

Table 10. Load cases considered to study the influence of the UD orientation on the foil mechanical

behavior.

Load case Position of the mass (X, Y, Z) Mass [kg]

1 ( 0.1, 0.0, 0.5) m 5

2 (-0.6, 0.0, 0.5) m 5

3 ( 0.1, 0.0, 1.0) m 5

4 (-0.6, 0.0, 1.0) m 5

Figure 13. Comparison of the deformed foils computed with the two models for a UD orientation

of -50◦ considering a suspended mass located at coordinates (−0.6, 0.0, 1.0) m (Load case 4)– :

Undeformed foil, ( ) : Abaqus 1D, ( ) : Abaqus 3D

Figure 13 shows the deformed shape for the foil with a UD orientation of -50◦ (most compliant foil)
considering the fourth load case. Figure 13 is not scaled and illustrates the typical magnitude of

deformation taken by the foils and it also highlights the good agreement between the two numerical

models. In Figure 13, the two deformed foils are almost superimposed, which is encouraging for the

future works, where FSI simulations will be performed.

The results given by the 3 models show a global good agreement. For instance, the displacement Dy

computed by the 3 models for the load case 3 (in yellow in Figure 14) is maximum for the UD -50◦

and minimum for the UD -10◦. This is consistent with the fiber orientations, as predicted in Table 5.
For the load case 2, a positive displacement is computed by the 3 models, this is due to the positive

torsion (Rz > 0, see Figure 16) of the foil which tends to bring up the corner of the clamping beam.

For UD -10◦, Figure 14 shows that the experimental displacement measured by the GOM-SCAN is

negative for the load case 4 whereas it is positive when computed with the numerical model. Two

effects can be identified to explain this result. First, the experimental torsional stiffness is underes-

timated in the numerical models. Thus, for the load case 4, the experimental torsion Rz is smaller

than the numerical torsion (see Figure 16). This induces a smaller experimental vertical displacement

at the corner of the clamping beam, where the displacement is measured. The second effect is an

overestimation of the flexural stiffness in the numerical models. This can be seen in Figure 15 which

shows a smaller numerical bending rotation compared to the experimental one, this means that the foil
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is more deformed downward in the experimental case. These two effects explain the smaller vertical

displacement Dy measured experimentally. To understand the differences in stiffness between the

numerical and experimental model, a fine investigation of the foils’ real structure should be performed.

Indeed, the terms of the equivalent stiffness matrix (see Eq. 1) are very sensitive to the structural and

geometrical variations, such as the orientation of the ply, its thickness or its elastic moduli.

Figure 14. Displacement along Y of the corner of the clamping beam for the 4 foils and 4 load cases

– ( ): Load case 1, ( ): Load case 2, ( ): Load case 3, ( ): Load case 4.

Figure 15. Rotation along X of the corner of the clamping beam for the 4 foils and 4 load cases – ( ):

Load case 1, ( ): Load case 2, ( ): Load case 3, ( ): Load case 4.

The models also show a good agreement for the bending rotation Rx. For instance, Figure 15 shows

that in the third load case, the rotation associated to the bending is getting smaller when the fiber

orientation is getting closer to 0◦. This result is obtained with the 3 models and shows that the flexion
of the foils is correctly captured for each UD orientation. The values of the torsion Rz computed by

the 3 models also show a good agreement. Figure 16 shows that the load cases 1 and 3, where

the mass is located ahead the leading edge, induce a negative torsion whereas load cases 2 and 4

(where the mass is located after the trailing edge) induce a positive torsion. This structural behavior

is expected and correctly captured by the 3 models. The torsion angles captured by the 3 models are

also very close, the maximum difference between the experimental and numerical results is obtained

for the third load case and the UD orientation of -10◦ (see Figure 16). In this case, the torsion mag-
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nitude measured experimentally is smaller than the torsion magnitude computed numerically. Figure

16 shows that the maximum differences between the torsions Rz computed experimentally and nu-

merically occur for the load case 3 and 4, where the bending rotation Rx is the most important (see

Figure 15). Thus, the difference between the numerical and experimental results is partially attributed

to the numerical modeling of the BTC which is not perfectly representative of the behavior of the foils

used during the experiments. These results show that the equivalent beam model correctly models

the structural behavior of a foil for different UD orientations. In addition to this, the torsion is properly

computed, which shows that the equivalent beam model can be used for FSI simulations.

Figure 16. Rotation along Z of the corner of the clamping beam for the 4 foils and 4 load cases – ( ):

Load case 1, ( ): Load case 2, ( ): Load case 3, ( ): Load case 4.

5.3 Global Deformation: Influence of the Torsion on the Bending

In this Section 5.3, the foils with the orientations 30◦ and -30◦ are retained because their BTC terms

are of opposite signs. The objective here is to compare results obtained with the experimental setup,

Abaqus 1D and Abaqus 3D. To do so, for each foil, 10 loading cases are considered where a 5 kg

mass is suspended from the foil. In the considered load cases, the mass location along the span of the

foil (Z) is fixed but its location along the chord (X) is variable. The Z component of the mass location

is 0.8 m and its X component varies between −0.7 m and 0.2 m with a step of 0.1 m. Because

the Z component of the mass location is fixed, the bending solicitation of a given foil is similar for

every load case. The variable here is the torsion solicitation of the foil, which is directly linked to

the X component of the mass location. For instance, if the mass is located ahead the leading edge

(X > 0m), the loading induces a negative torsion whereas the induced torsion is positive when the

mass is suspended behind the trailing edge (X < 0.25m). Because of the BTC, the torsions induced
by the different load cases impact differently the bending of a given foil. The goal of these experiments

is to capture the different bending behaviors for each load case and two opposite UD orientations.

This is done to check the consistency of the BTC modeling in the numerical models.

The values of interest are Dy, Rx and Rz and their values are plotted in Figure 17 for the 2 UD orien-

tations considered and several locations of the mass along the chord of the foil. To easily visualize the

location of masses along the chord of the foils, the trailing and leading edges of the foils are plotted

with black lines in Figure 17. The results show that the torsions captured with the 3 models are in

good agreement, in terms of trend and magnitude.
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Figure 17. Displacement of the clamping beam corner for the foils 30◦ and -30◦ for different mass
locations along the chord – ( ) : Abaqus 1D −30◦, ( ) : Abaqus 1D 30◦, ( ) : Abaqus 3D −30◦,
( ) : Abaqus 3D 30◦, ( ) : Experimental 30◦, ( ) : Experimental −30◦.

For both UD orientations, the torsion decreases when the mass is moved from the trailing edge to-

wards the leading edges of the foils. This behavior is expected and shows the ability of the equivalent

beam model to capture the torsion of the foils for different mass locations. Because of the opposite

UD orientations, the impact of the torsion on the bending is different for the UD orientations 30◦ and
-30◦.

In the present frame (see Figure 4), a negativeDy displacement is characterized by a positive value of
Rx and a positive one is characterized by a negative value of Rx. Figure 17 shows that two different
behaviors are captured for the bending rotation Rx. For the UD orientation of 30◦, Rx decreases

when the mass is shifted from the trailing edge towards the leading edge, whereas Rx increases for

the orientation of -30◦. This behavior, captured by the 2 models, shows that the BTC induced by

the orientation of 30◦ tends to reduce the flexion of the foil when its torsion decreases. An opposite
phenomenon is observed for the orientation of -30◦, such behaviors are consistent with comments

given in Section 5.1.

For the displacement Dy and the bending rotation Rx, the differences between the experimental

and numerical results are higher than for the torsion Rz. Some of these differences are due to the

uncertainties on the frame acquisitions. However, the trends of Rx and Dy are similar between the 3
models.

For the displacement Dy, when the mass is shifted towards the leading edge, the magnitude of the
displacement decreases faster for the foil with the orientation of -30◦ than the foil with the orientation
of 30◦. This is consistent with the values of the bending rotation Rx because, for the orientation of

-30◦, Rx increases when the mass is shifted towards the leading edge, whereas it decreases for

the orientation of 30◦. Figure 17 shows that, for a UD orientation of 30◦, the torsion of the foil stays
positive when the mass is fixed ahead the leading edge (X = 0.0 m and X = 0.1 m). This is counter
intuitive regarding the considered load case. This is caused by the BTC, where the negative flexion

of the beam induces a positive torsion contribution. Thus, for a significant flexion, the positive torsion

induced by the BTC can be higher than the torsion induced by the load case. The shift between the

values of Rz for the 2 orientations in Figure 17 can be attributed to the torsion contribution induced by
the BTC and the flexion of the foil. These results assess the capacity of the equivalent beam model

to capture the BTC effects of foils with opposite UD orientations.
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5.4 Local Deformation: Influence of the Mass Location

The objective is to validate the ability of the equivalent beam model to capture local phenomenon

on the 3D surface of the foils. Because the strains are important near the clamping, a significant

warping of the sections of the foils may occur. Therefore, to reconstruct the 3D surface of the foil,

the warping is considered. This means that the motion of the points belonging to the 3D surface is

decomposed into two components. Firstly, the surface follows a rigid body motion computed from the

nodal displacements of the beam elements and the linear Timoshenko shape functions (see Section

2.2). Then, the deformation of the surface associated to the warping of the sections is computed. To

do so, the deformed shapes of the sections of the foils are computed with the nodal displacements of

the beam elements and the warping functions computed during the section analysis.

The results found with the GOM 5M are difficult to post-process because the computed displacements

are small: around 0.01 mm. At this scale, the smallest error during the manipulation may invalidate

the measure. The cleanest results given with the GOM 5M are obtained for the foil with the UD

orientation of -30◦ and thus, this is the only foil considered in this Section. As in Sections 5.2 and 5.3,
the displacements are computed by considering the foil with the clamping beam without hung mass

as the reference configuration. This reduces the source of uncertainties due to the manipulation and

the geometrical surface defects. For the foil with a UD orientation of -30◦, the difference between the
Z displacement in Z = 0.27 m and Z = 0.35 m (see Figure 9) is studied for two load cases. The load

cases are chosen to maximize the deformations measured on the foil, they are defined such as:

• Load case 1: X = −0.7m and Z = 0.8 m;

• Load case 2: X = 0.2m and Z = 0.8 m.

In Figure 18 and Figure 19, the relative Z displacements between the ends of the speckle (see Fig-

ure 9) are respectively plotted for the load cases 1 and 2. For the two considered load cases, each

of the 3 models gives similar results for the mean relative displacement between Z = 0.27 m and

Z = 0.35 m. The relative Z displacement in the first load case is approximately 4 times smaller than

in the second load case. This result is consistent with the results of Section 5.3. Indeed, for the

orientation of -30◦, Figure 17 shows that the bending rotation Rx is smaller for X = −0.7 m than for

X = 0.2 m and the higher the bending rotation Rx, the higher Z displacement on the upper surface of

the foil near the clamping. Thus, the relative Z displacement of the skin near the clamping is higher

in the case where the mass is fixed ahead the leading edge of the foil. Figure 18 and Figure 19 show

that this behavior is correctly captured with the 3 models. In Figure 19, the variation of the relative Z
displacements along the chord measured with the 3 models are similar, it decreases near the leading

edge of the foil (X = 0 m). There are still differences between the models, but their origins are hard to
identify because of the uncertainties and the many unknowns (e.g. real shape of the foil, engineering

constants, manufacturing defects, etc.). The precision of the 1D FEA in terms of trend and magnitude

for the relative displacements is deemed sufficient and the results show that the equivalent beam

model correctly captures the structural behavior of composite hydrofoils, even for local deformations.
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Figure 18. Relative Z displacement between Z = 0.35 m and Z = 0.27 m computed on the speckle

area for a 5 kg mass suspended at (−0.7, 0.0, 0.8) m – ( ) : GOM 5M, ( ) : Abaqus 1D, ( ) : Abaqus

3D.

Figure 19. Relative Z displacement between Z = 0.35 m and Z = 0.27 m computed on the speckle

area for a 5 kg mass suspended at (0.2, 0.0, 0.8) m – ( ) : GOM 5M, ( ) : Abaqus 1D, ( ) : Abaqus

3D.

5.5 Local Deformation: Warping Magnitude

To evaluate the impact of the warping on the numerical results, it is interesting to compare the warping

of the section of a foil computed with the two numerical models. The warping cannot be computed

from the results of the GOM 5M because the uncertainties on the displacement are of the same

order as the warping displacement. To have readable results, the warping is only compared for the

foils 30◦ and -30◦. The warping is studied near the clamping (Z = 0.27 m) because this is where the
deformations are the most important. The load case considered is a mass of 5 kg suspended from the

foil at the coordinates (0.2, 0.0, 0.8) m. The warping of the foils is computed with the upper part of the
sections, this is acceptable because the geometry of the section is a symmetric airfoil. To compute the

warping from the results given by Abaqus 3D, the displacement of the section of interest (Z = 0.27m)

is decomposed into a rigid body motion component and a pure warping component. The first step of

this decomposition is to identify the location of the shear center of the considered section in the initial

and deformed 3D mesh, this gives us the rigid translation of the cross section. Then, the deformed
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section is transported onto the initial section. The rotation of the section is then determined as the

rotation minimizing the distance between the points of the initial and deformed section, using the least

square method. Finally, the residual displacements are identified as the warping. For Abaqus 1D,

the warping displacement is computed from the warping functions with the functionality provided in

Abaqus™ 2022.

In Figures 20, 21 and 22, every component of the warping displacement computed with the 2 models

are plotted. The displacements are made dimensionless with the value of the rigid motion magnitude

of the section. Figure 22 shows the out-of-plane warping of the sections of the foils with the orientation

of 30◦ and -30◦. The sign of the out-of-plane warping displacement is different between the foils, which
is an expected behavior because the UD orientations of the considered foils are opposite. However,

the warping magnitude is higher in the 1D model, which can partially explain the differences between

the two numerical models in Figure 18 and Figure 19.

Figure 20. X component of the warping displacement at Z = 0.27 m for a 5 kg mass suspended at

(0.2, 0.0, 0.8) m – ( ) : Abaqus 1D −30◦, ( ) : Abaqus 1D 30◦, ( ) : Abaqus 3D −30◦, ( ) :

Abaqus 3D 30◦.

Figure 21. Y component of the warping displacement for a 5 kg mass suspended at (0.2, 0.0, 0.8) m
– ( ) : Abaqus 1D −30◦, ( ) : Abaqus 1D 30◦, ( ) : Abaqus 3D −30◦, ( ) : Abaqus 3D 30◦.
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Figure 22. Z component of the warping displacement for a 5 kg mass suspended at (0.2, 0.0, 0.8) m
– ( ) : Abaqus 1D −30◦, ( ) : Abaqus 1D 30◦, ( ) : Abaqus 3D −30◦, ( ) : Abaqus 3D 30◦.

Figure 20 shows a good agreement between the two models in terms of trend for the warping dis-

placements along X Dxwarp. According to both models, Dxwarp is smaller near the leading edge of

the foil for the UD orientation of -30◦. The two models estimate a maximum Dxwarp of about 1.2% of

the rigid body motion, this is considered negligible. This is not the case for the warping displacement

along Y , denoted Dywarp. Figure 21 shows a warping displacement with a maximum magnitude of

6% for Abaqus 1D and Abaqus 3D.

The major differences between Dywarp computed with Abaqus 1D and Abaqus 3D are inherent to

the models. In Abaqus 3D, because the geometric nonlinearities are considered during the FEA, the

internal forces in the shells impact the flexion of the foil. A stretched shell element sees its out-of-

plane flexural compliance decrease (Reddy, 2006). For the considered foil, the skin of the foil can be

locally considered as a plate borne elastically to the Airex web. The warping analysis is realized on

the traction side of the foil and the traction is directed along the span of the foil. Thus, the magnitude

of Dywarp (out-of-plane flexion) is expected to be reduced. This phenomenon is observed because

the FEA is realized considering the geometric nonlinearities. The magnitude of Dywarp is smaller for

Abaqus 1D because this model does not take this phenomenon into account.

This is due to the formulation of the section analysis, where the hypothesis of a warping smaller than

the rigid body motion of the sections is made. The results show that the warping of sections should be

modeled in the equivalent beam model to compute the strains, the stresses and the deformed shape

of the foil, because its magnitude is not negligible regarding the rigid body motion. The warping

computed with Abaqus 1D is almost correctly modelled, since its trend is correct, but its magnitude is

overestimated compared to the warping computed with Abaqus 3D.

5.6 Stress Recovery

To end this work, a numerical comparison of the stress field in a section of the foil is performed. In

Abaqus 1D, the 2D stress field in a section can be reconstructed from the warping functions and the

sectional stresses of a beam element. This result is compared with the stress field given by Abaqus

3D. For this study, the most compliant foil is considered (-50◦) with a 5 kg mass suspended to it

at coordinates (−0.6, 0.0, 1.0) m. The load is applied with the clamping beam and its mass is not

neglected (3.54 kg). The deformed shapes of the foil computed with both models are illustrated in

Figure 13. As in Section 3.2, to maximize stresses in the cross-section without being disturbed by the

clamping, the studied section is located at Z = 0.27 m from the clamping.

233

Downloaded from http://onepetro.org/JST/article-pdf/10/01/206/5245304/sname-jst-2025-10.pdf/1 by guest on 08 September 2025



The stresses are only studied in the composite skin of the foil because stresses in the web are negli-

gible compared to the one in the skin. The analysis is conducted for the axial, transverse and shear

stress components. In Abaqus ™, the axial stress is computed along the fiber direction (Dassault

Systèmes, 2022).

Figures 23, 24 and 25 show the evolution of the axial, transverse and shear stress along the chord

of the foil on its traction and compression side. The results show that the stress field recovered from

the 1D FEA matches very well with the stress field computed in Abaqus 3D. This is true for both sides

of the foils. Differences can be spotted between the numerical models for the taffeta ply. In Abaqus

1D, the magnitude of the axial stress is slightly higher than the one of Abaqus 3D (see Figure 23).

However, Figure 13 shows that for the considered load case, the vertical displacement obtained with

the equivalent beam model is also slightly higher. This partially explains the differences observed

in Figure 23. This final study shows that Abaqus 1D is able to reconstruct a consistent stress field

from the warping functions and sectional stresses of a beam element. The stress recovery could be

included in a low-fidelity FSI coupling, to define a structural criterion informing us about the structural

integrity of a given foil.

Figure 23. Comparison of the axial stresses computed numerically in the traction side (left) and

compression side (right) of the glass plies of the foil, considering a UD orientation of -50◦ considering
a suspended mass located at coordinates (−0.6, 0.0, 1.0) m – ( ): UD ply Abaqus 3D, ( ):UD ply

Abaqus 1D, ( ): Taffeta ply Abaqus 3D, ( ):Taffeta ply Abaqus 1D.

Figure 24. Comparison of the transverse stresses computed numerically in the traction side (left) and

compression side (right) of the glass plies of the foil, considering a UD orientation of -50◦ considering
a suspended mass located at coordinates (−0.6, 0.0, 1.0) m – ( ): UD ply Abaqus 3D, ( ):UD ply

Abaqus 1D, ( ): Taffeta ply Abaqus 3D, ( ):Taffeta ply Abaqus 1D.
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Figure 25. Comparison of the shear stresses computed numerically in the traction side (left) and

compression side (right) of the glass plies of the foil, considering a UD orientation of -50◦ considering
a suspended mass located at coordinates (−0.6, 0.0, 1.0) m – ( ): UD ply Abaqus 3D, ( ):UD ply

Abaqus 1D, ( ): Taffeta ply Abaqus 3D, ( ):Taffeta ply Abaqus 1D.

6 CONCLUSION

This paper presented a method to model a composite hydrofoil with equivalent beam finite elements.

This work is conducted to determine if an hydrofoil could be optimized with FSI simulations considering

the equivalent beam approach. This approach reduces the dimension of the optimization problem and

the computational cost of its resolution. In the present study, the 1D finite element model is 50 times

faster than the 3D finite element model, and this ratio goes up to 20 000 if the warping of the sections

is neglected.

The equivalent beam modeling method is decomposed in two main parts, firstly, the sections of the

foil are analyzed all along its span with the section analysis tools provided by Abaqus™ 2022. Then,

from the results obtained with the section analysis, an equivalent beam is constructed as an assembly

of 1D finite linear Timoshenko beam elements and a FEA is achieved for an arbitrary load case. The

3D geometry of the deformed foil is then determined from the equivalent beam displacements and the

warping functions of the sections computed during the section analysis. The equivalent beammethod

is able to model couplings in the materials, such as bend-twist coupling or extension-twist coupling.

The equivalent beam model is validated by comparing the results given by an experimental campaign

and a classical finite element analysis of the foil (3D solid + 2D shell finite elements). The experi-

mental results are obtained with a GOM-SCAN and a GOM 5M, which are cameras respectively used

to capture the global displacement of the foils and to study the local displacements of the foils near

the clamping. The GOM-SCAN is used to characterize the general structural behavior of the foils

for different fiber orientations and then, for a given flexion, the impact of the torsion on the flexion

via the bend-twist coupling is investigated for two foils with opposite fiber orientations. The different

results show a good agreement and validate that the equivalent beam model can describe a com-

posite hydrofoil with anisotropic properties such as bend-twist coupling. With the GOM 5M, the local

displacement of the upper surface of the foils near the clamping is measured and compared with the

results of the numerical models. There is a good agreement between the experiments and the nu-

merical model in terms of trend and magnitude. This shows that the equivalent beammodel is precise

enough to correctly capture local phenomenon on the surface of the foils. A numerical study of the

warping magnitude is made to determine if it should be taken into account in the 1D finite element

model. The results show that its magnitude is not negligible and therefore, it should be computed

even if it increases the time of the structural computations.
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The stress field in the warped sections can be computed from the equivalent beammodel by Abaqus™.

The stress recovery in the equivalent beam model is studied and shows that the stress field in the

composite skin of the foil is consistent with the results of Abaqus 3D. This illustrates the capacity

of Abaqus 1D to estimate the stresses in the section of a deformed foil, which is useful to define a

structural criterion in a FSI simulation.

The method presented in this paper is new and was not validated to study composite hydrofoils. This

paper shows that an equivalent beam model is able to model slender hydrofoils with couplings in the

material. The results are encouraging and let us think that the equivalent beam model is adapted to

realize FSI simulations on an hydrofoil to evaluate its performances. The main advantage of the beam

model is its reduced computationnal time, which can be usefull to evaluate rapidly the performances

of a hydrofoil in the early steps of an optimization process, where a multitude of designs are tested.

As a future work, computations should be performed considering a hydrodynamic loading applied on

the foil, to validate the method for more complex load cases. The method presented in this paper

should also be validated with more complex foils, with varying geometric and structural properties for

instance. The next goal is to use the equivalent beam model to perform a topological optimization of

a foil by varying its equivalent properties.
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